Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 49(13): e74, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877327

RESUMO

Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.


Assuntos
Reparo do DNA por Junção de Extremidades , Reação em Cadeia da Polimerase , Reparo de DNA por Recombinação , Proteína BRCA1/fisiologia , Proteína BRCA2/fisiologia , Proteína 9 Associada à CRISPR , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Loci Gênicos , Humanos , Transfecção
3.
J Cell Sci ; 127(Pt 16): 3505-20, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24938596

RESUMO

A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.


Assuntos
Mitose , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Motivos de Aminoácidos , Cromatina/genética , Cromatina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Poro Nuclear/química , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética
4.
Elife ; 122023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647215

RESUMO

When replication forks encounter DNA lesions that cause polymerase stalling, a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the Escherichia coli-based Tus-Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.


Assuntos
Dano ao DNA , Replicação do DNA , Humanos , Fosforilação , Escherichia coli/genética , Genômica , Proteínas Mutadas de Ataxia Telangiectasia/genética
5.
bioRxiv ; 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993263

RESUMO

When replication forks encounter DNA lesions that cause polymerase stalling a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the E.coli -based Tus- Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.

6.
J Mol Biol ; 434(7): 167509, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202629

RESUMO

Intranuclear position of several genes is dynamically altered during development concordant with their activation. To understand this dynamic, but non-random, nuclear organization, it is important to identify the relevant regulatory elements and trans acting factors. Murine TCRb locus gets activated during thymic development. Enhancer Eb is important for VDJ recombination at TCRb locus as it is critically required for establishment of recombination center. Our analysis revealed that TCRb locus gets located out of the chromosome territory specifically in developing thymocytes. Further, CRISPR/Cas9 based deletion mutagenesis established an unambiguous role of enhancer Eb in defining TCRb location relative to chromosome territory. The ability to reposition the target locus relative to chromosome territory highlights a novel aspect pertaining to activity of enhancers which may contribute to their ability to regulate gene expression. Additionally, our observations have implications for understanding the role of enhancers in three-dimensional genome organization and function.


Assuntos
Elementos Facilitadores Genéticos , Loci Gênicos , Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos , Recombinação V(D)J , Animais , Cromatina/metabolismo , Cromossomos/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timócitos/metabolismo
7.
Mol Cell Biol ; 42(2): e0052421, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34928169

RESUMO

Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by replication protein A (RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals, BRCA2 is the primary mediator; however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and dephosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. In BRCA2-depleted human cells, in which the only available mediator pathway is RAD52 dependent, the expression of a phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phosphomutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51 and its subsequent promotion of RAD52-mediated HR.


Assuntos
Reparo do DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Estafilocócica A/metabolismo , Reparo do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Humanos , Fosforilação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Reparo de DNA por Recombinação/genética , Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 13(1): 7293, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435847

RESUMO

It is thought that many of the simple and complex genomic rearrangements associated with congenital diseases and cancers stem from mistakes made during the restart of collapsed replication forks by recombination enzymes. It is hypothesised that this recombination-mediated restart process transitions from a relatively accurate initiation phase to a less accurate elongation phase characterised by extensive template switching between homologous, homeologous and microhomologous DNA sequences. Using an experimental system in fission yeast, where fork collapse is triggered by a site-specific replication barrier, we show that ectopic recombination, associated with the initiation of recombination-dependent replication (RDR), is driven mainly by the Rad51 recombinase, whereas template switching, during the elongation phase of RDR, relies more on DNA annealing by Rad52. This finding provides both evidence and a mechanistic basis for the transition hypothesis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Replicação do DNA , DNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a DNA/metabolismo
9.
Cancers (Basel) ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340507

RESUMO

The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.

10.
Elife ; 82019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667359

RESUMO

Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.


Assuntos
Replicação do DNA/genética , Recombinação Homóloga/genética , Schizosaccharomyces/genética , Moldes Genéticos , Pareamento de Bases/genética , Mutação/genética , RNA de Transferência/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
Elife ; 82019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31149897

RESUMO

Protein-DNA complexes can impede DNA replication and cause replication fork collapse. Whilst it is known that homologous recombination is deployed in such instances to restart replication, it is unclear how a stalled fork transitions into a collapsed fork at which recombination proteins can load. Previously we established assays in Schizosaccharomyces pombe for studying recombination induced by replication fork collapse at the site-specific protein-DNA barrier RTS1 (Nguyen et al., 2015). Here, we provide evidence that efficient recruitment/retention of two key recombination proteins (Rad51 and Rad52) to RTS1 depends on unloading of the polymerase sliding clamp PCNA from DNA by Elg1. We also show that, in the absence of Elg1, reduced recombination is partially suppressed by deleting fbh1 or, to a lesser extent, srs2, which encode known anti-recombinogenic DNA helicases. These findings suggest that PCNA unloading by Elg1 is necessary to limit Fbh1 and Srs2 activity, and thereby enable recombination to proceed.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA Fúngico/metabolismo , Fluorescência , Modelos Biológicos , Mutação/genética , Fase S
13.
Mol Cell Biol ; 37(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137913

RESUMO

CTCF-mediated chromatin interactions influence organization and function of mammalian genome in diverse ways. We analyzed the interactions among CTCF binding sites (CBS) at the murine TCRb locus to discern the role of CTCF-mediated interactions in the regulation of transcription and VDJ recombination. Chromosome conformation capture analysis revealed thymocyte-specific long-range intrachromosomal interactions among various CBS across the locus that were relevant for defining the limit of the enhancer Eb-regulated recombination center (RC) and for facilitating the spatial proximity of TCRb variable (V) gene segments to the RC. Ectopic CTCF binding in the RC region, effected via genetic manipulation, altered CBS-directed chromatin loops, interfered with RC establishment, and reduced the spatial proximity of the RC with Trbv segments. Changes in chromatin loop organization by ectopic CTCF binding were relatively modest but influenced transcription and VDJ recombination dramatically. Besides revealing the importance of CTCF-mediated chromatin organization for TCRb regulation, the observed chromatin loops were consistent with the emerging idea that CBS orientations influence chromatin loop organization and underscored the importance of CBS orientations for defining chromatin architecture that supports VDJ recombination. Further, our study suggests that in addition to mediating long-range chromatin interactions, CTCF influences intricate configuration of chromatin loops that govern functional interactions between elements.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Repressoras/metabolismo , Recombinação V(D)J/genética , Animais , Sítios de Ligação/imunologia , Fator de Ligação a CCCTC , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Genoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética
14.
Mol Cell Biol ; 35(20): 3504-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240285

RESUMO

Developmental stage-specific enhancer-promoter-insulator interactions regulate the chromatin configuration necessary for transcription at various loci and additionally for VDJ recombination at antigen receptor loci that encode immunoglobulins and T-cell receptors. To investigate these regulatory interactions, we analyzed the epigenetic landscape of the murine T-cell receptor ß (TCRß) locus in the presence and absence of an ectopic CTCF-dependent enhancer-blocking insulator, H19-ICR, in genetically manipulated mice. Our analysis demonstrated the ability of the H19-ICR insulator to restrict several aspects of enhancer-based chromatin alterations that are observed during activation of the TCRß locus for transcription and recombination. The H19-ICR insulator abrogated enhancer-promoter contact-dependent chromatin alterations and additionally prevented Eß-mediated histone modifications that have been suggested to be independent of enhancer-promoter interaction. Observed enhancer-promoter-insulator interactions, in conjunction with the chromatin structure of the Eß-regulated domain at the nucleosomal level, provide useful insights regarding the activity of the regulatory elements in addition to supporting the accessibility hypothesis of VDJ recombination. Analysis of H19-ICR in the heterologous context of the developmentally regulated TCRß locus suggests that different mechanisms proposed for CTCF-dependent insulator action might be manifested simultaneously or selectively depending on the genomic context and the nature of enhancer activity being curtailed.


Assuntos
Cromatina/genética , Elementos Facilitadores Genéticos , Proteínas Repressoras/fisiologia , Animais , Fator de Ligação a CCCTC , Células Cultivadas , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Histonas , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutagênese Insercional , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , Timócitos , Ativação Transcricional
15.
Elife ; 4: e04539, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25806683

RESUMO

The completion of genome duplication during the cell cycle is threatened by the presence of replication fork barriers (RFBs). Following collision with a RFB, replication proteins can dissociate from the stalled fork (fork collapse) rendering it incapable of further DNA synthesis unless recombination intervenes to restart replication. We use time-lapse microscopy and genetic assays to show that recombination is initiated within ∼ 10 min of replication fork blockage at a site-specific barrier in fission yeast, leading to a restarted fork within ∼ 60 min, which is only prevented/curtailed by the arrival of the opposing replication fork. The restarted fork is susceptible to further collapse causing hyper-recombination downstream of the barrier. Surprisingly, in our system fork restart is unnecessary for maintaining cell viability. Seemingly, the risk of failing to complete replication prior to mitosis is sufficient to warrant the induction of recombination even though it can cause deleterious genetic change.


Assuntos
Replicação do DNA , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Proteína Fosfatase 2/genética , Recombinação Genética , Schizosaccharomyces/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mitose , Proteína Fosfatase 2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA