Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Autoimmun ; 135: 102983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640636

RESUMO

Myasthenia gravis (MG) is a debilitating autoimmune disease characterized by muscle fatigue and weakness caused by autoantibody- and complement-mediated damage to the neuromuscular junction. This study sought to compare the efficacy of unique sets of monoclonal antibody-siRNA conjugates, individually (mono) or in combination (duo), against the crucial receptors predominantly or solely expressed on two subsets of B cells-plasma B cells and their precursor (transitional mature B) cells in a mouse model of MG. At the optimized doses, the conjugates, likely due to the combined activities of mAb and siRNA, substantially decreased the expression levels of CD268 (B cell-activating factor receptor) in mature B cells and CD269 (B-cell maturation antigen) in plasma cells concomitantly with reducing the levels of acetylcholine receptor (AChR)-specific autoantibodies. PEGylation, but not pretreatment with an antibody against type 1 interferon receptor, further improved duoconjugate-induced reduction in the autoantibody levels. Our results show that the duoconjugate treatment significantly improved the clinical symptoms of MG, consistent with the preservation of bungarotoxin-bound functional AChRs. In the future, developing similar target-specific combination molecules can potentially turn into a new and effective therapeutic approach for MG.


Assuntos
Miastenia Gravis Autoimune Experimental , Camundongos , Animais , RNA Interferente Pequeno , Receptores Colinérgicos , Anticorpos Monoclonais , Autoanticorpos
2.
Am J Respir Cell Mol Biol ; 60(1): 68-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153047

RESUMO

NF-κB/RelA triggers innate inflammation by binding to bromodomain-containing protein 4 (BRD4), an atypical histone acetyltransferase (HAT). Although RelA·BRD4 HAT mediates acute neutrophilic inflammation, its role in chronic and functional airway remodeling is not known. We observed that BRD4 is required for Toll-like receptor 3 (TLR3)-mediated mesenchymal transition, a cell-state change that is characteristic of remodeling. We therefore tested two novel highly selective BRD4 inhibitors, ZL0420 and ZL0454, for their effects on chronic airway remodeling produced by repetitive TLR3 agonist challenges, and compared their efficacy with that of two nonselective bromodomain and extraterminal (BET) protein inhibitors, JQ1 and RVX208. We observed that ZL0420 and ZL0454 more potently reduced polyinosinic:polycytidylic acid-induced weight loss and fibrosis as assessed by microcomputed tomography and second harmonic generation microscopy. These measures correlated with the collagen deposition observed in histopathology. Importantly, the ZL inhibitors were more effective than the nonselective BET inhibitors at equivalent doses. The ZL inhibitors had significant effects on lung physiology, reversing TLR3-associated airway hyperresponsiveness and increasing lung compliance in vivo. At the molecular level, ZL inhibitors reduced elaboration of the transforming growth factor-ß-induced growth program, thereby preventing mucosal mesenchymal transition and disrupting BRD4 HAT activity and complex formation with RelA. We also observed that ZL0454 treatment blocked polyinosinic:polycytidylic acid-associated expansion of the α-SMA1+/COL1A+ myofibroblast population and prevented myofibroblast transition in a coculture system. We conclude that 1) BRD4 is a central effector of the mesenchymal transition that results in paracrine activation of myofibroblasts, mechanistically linking innate inflammation to airway hyperresponsiveness and fibrosis, and 2) highly selective BRD4 inhibitors may be effective in reversing the effects of repetitive airway viral infections on innate inflammation-mediated remodeling.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Inflamação/fisiopatologia , Proteínas Nucleares/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Mucosa Respiratória/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Remodelação das Vias Aéreas/fisiologia , Animais , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Humanos , Imunidade Inata/imunologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , RNA Interferente Pequeno/genética , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
3.
J Proteome Res ; 18(9): 3447-3460, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31424945

RESUMO

Type II epithelial-mesenchymal transition (EMT) plays a vital role in airway injury, repair, and remodeling. Triggered by growth factors, such as transforming growth factor beta (TGFß), EMT induced a biological process that converts epithelial cells into secretory mesenchymal cells with a substantially increased production of extracellular matrix (ECM) proteins. Epithelial cells are not professional secretory cells and produce few ECM proteins under normal conditions. The molecular mechanism underlying the transformation of the protein factory and secretory machinery during EMT is significant because ECM secretion is central to the pathogenesis of airway remodeling. Here we report that type II EMT upregulates the protein N-glycosylation of ECMs. The mechanism study reveals that the substantial increase in synthesis of ECM proteins in EMT activates the inositol-requiring protein 1 (IRE1α)-X-box-binding protein 1 (XBP1) axis of the unfolded protein response (UPR) coupled to the hexosamine biosynthesis pathway (HBP). These two pathways coordinately up-regulate the protein N-glycosylation of ECM proteins and increase ER folding capacity and ER-associated degradation (ERAD), which improve ER protein homeostasis and protect transitioned cells from proteotoxicity. Inhibition of the alternative splicing of XBP1 or protein N-glycosylation blocks ECM protein secretion, indicating the XBP1-HBP plays a prominent role in regulating the secretion of ECM proteins in the mesenchymal transition. Our data suggest that the activation of XBP1-HBP pathways and elevation of protein N-glycosylation is an adaptive response to maintain protein quality control and facilitate the secretion of ECM proteins during the mesenchymal transition. The components of the XBP1-HBP pathways may be therapeutic targets to prevent airway remodeling.


Assuntos
Remodelação das Vias Aéreas/genética , Endorribonucleases/genética , Lesão Pulmonar/genética , Proteínas Serina-Treonina Quinases/genética , Proteína 1 de Ligação a X-Box/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Glicosilação , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Proteostase/genética , Transdução de Sinais/genética
4.
J Immunol ; 198(8): 3345-3364, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258195

RESUMO

Lower respiratory tract infections from respiratory syncytial virus (RSV) are due, in part, to secreted signals from lower airway cells that modify the immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea versus small airway bronchiolar cells. A workflow was established using telomerase-immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in secreted proteins and nanoparticles (exosomes). Approximately one third of secretome proteins are exosomal; the remainder are from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea versus bronchioles. A total of 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate. Fifteen proteins unique to RSV-infected primary human cultures from trachea were regulated by epithelial-specific ets homologous factor. A total of 106 proteins unique to RSV-infected human small airway epithelial cells was regulated by the transcription factor NF-κB. In this latter group, we validated the differential expression of CCL20/macrophage-inducible protein 3α, thymic stromal lymphopoietin, and CCL3-like 1 because of their roles in Th2 polarization. CCL20/macrophage-inducible protein 3α was the most active mucin-inducing factor in the RSV-infected human small airway epithelial cell secretome and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses and regional differences in the epithelial secretome participating in RSV lower respiratory tract infection-induced airway remodeling.


Assuntos
Remodelação das Vias Aéreas/imunologia , Bronquíolos/imunologia , Proteômica/métodos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções Respiratórias/imunologia , Bronquíolos/metabolismo , Células Cultivadas , Humanos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/metabolismo , Traqueia/imunologia , Traqueia/metabolismo
5.
Mol Cell Proteomics ; 14(10): 2701-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209609

RESUMO

Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , RNA Helicases DEAD-box/metabolismo , Splicing de RNA , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Mapeamento de Interação de Proteínas , Transcrição Gênica
6.
J Biol Chem ; 289(17): 11927-11944, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24523406

RESUMO

Modulators (Ms) are proteins that modify the activity of transcription factors (TFs) and influence expression of their target genes (TGs). To discover modulators of NF-κB/RelA, we first identified 365 NF-κB/RelA-binding proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used a probabilistic model to infer 8349 (M, NF-κB/RelA, TG) triplets and their modes of modulatory action from our combined LC-MS/MS and ChIP-Seq (ChIP followed by next generation sequencing) data, published RelA modulators and TGs, and a compendium of gene expression profiles. Hierarchical clustering of the derived modulatory network revealed functional subnetworks and suggested new pathways modulating RelA transcriptional activity. The modulators with the highest number of TGs and most non-random distribution of action modes (measured by Shannon entropy) are consistent with published reports. Our results provide a repertoire of testable hypotheses for experimental validation. One of the NF-κB/RelA modulators we identified is STAT1. The inferred (STAT1, NF-κB/RelA, TG) triplets were validated by LC-selected reaction monitoring-MS and the results of STAT1 deletion in human fibrosarcoma cells. Overall, we have identified 562 NF-κB/RelA modulators, which are potential drug targets, and clarified mechanisms of achieving NF-κB/RelA multiple functions through modulators. Our approach can be readily applied to other TFs.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fator de Transcrição RelA/fisiologia , Imunoprecipitação da Cromatina , Análise por Conglomerados , Probabilidade , Espectrometria de Massas em Tandem
7.
Adv Exp Med Biol ; 795: 221-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24162912

RESUMO

Proteomic investigations in general utilize varied technologies for sample preparation, separations, quantification, protein identification, and biological rationalization. Their applications range from pure discovery and mechanistic studies to biomarker discovery/verification/validation. In each specific case, the analytical strategy to be implemented is tailored to the type of sample that serves as the target of the investigations. Proteomic investigations take into consideration sample complexity, the cellular heterogeneity (particularly from tissues), the potential dynamic range of the protein and peptide abundance within the sample, the likelihood of posttranslational modifications (PTM), and other important factors that might influence the final output of the study. We describe the sample types typically used for proteomic investigations into the biology of asthma and review the most recent related publications with special attention to those that deal with the unique airway samples such as bronchoalveolar lavage fluids (BALF), epithelial lining fluid and cells (ELF), induced sputum (IS), and exhaled breath condensate (EBC). Finally, we describe the newest proteomics approaches to sample preparation of the unique airway samples, BALF and IS.


Assuntos
Asma/metabolismo , Proteoma/análise , Proteômica/métodos , Manejo de Espécimes/métodos , Asma/diagnóstico , Asma/imunologia , Biomarcadores/análise , Líquidos Corporais/química , Testes Respiratórios/métodos , Líquido da Lavagem Broncoalveolar/química , Broncoscopia , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Humanos , Proteômica/instrumentação , Manejo de Espécimes/normas , Escarro/química , Espectrometria de Massas em Tandem
8.
Am J Physiol Regul Integr Comp Physiol ; 305(3): R216-23, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761639

RESUMO

Bed rest induces significant loss of leg lean mass in older adults. Systemic and tissue inflammation also accelerates skeletal muscle loss, but it is unknown whether inflammation is associated to inactivity-induced muscle atrophy in healthy older adults. We determined if short-term bed rest increases toll-like receptor 4 (TLR4) signaling and pro-inflammatory markers in older adult skeletal muscle biopsy samples. Six healthy, older adults underwent seven consecutive days of bed rest. Muscle biopsies (vastus lateralis) were taken after an overnight fast before and at the end of bed rest. Serum cytokine expression was measured before and during bed rest. TLR4 signaling and cytokine mRNAs associated with pro- and anti-inflammation and anabolism were measured in muscle biopsy samples using Western blot analysis and qPCR. Participants lost ∼4% leg lean mass with bed rest. We found that after bed rest, muscle levels of TLR4 protein expression and interleukin-6 (IL-6), nuclear factor-κB1, interleukin-10, and 15 mRNA expression were increased after bed rest (P < 0.05). Additionally, the cytokines interferon-γ, and macrophage inflammatory protein-1ß, were elevated in serum samples following bed rest (P < 0.05). We conclude that short-term bed rest in older adults modestly increased some pro- and anti-inflammatory cytokines in muscle samples while systemic changes in pro-inflammatory cytokines were mostly absent. Upregulation of TLR4 protein content suggests that bed rest in older adults increases the capacity to mount an exaggerated, and perhaps unnecessary, inflammatory response in the presence of specific TLR4 ligands, e.g., during acute illness.


Assuntos
Repouso em Cama/efeitos adversos , Interleucina-6/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Receptor 4 Toll-Like/biossíntese , Idoso , Anabolizantes/farmacologia , Atrofia , Biópsia , Western Blotting , Citocinas/biossíntese , Citocinas/fisiologia , DNA Complementar/biossíntese , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , RNA/biossíntese , RNA/isolamento & purificação , Transdução de Sinais/fisiologia
9.
Mol Cell Proteomics ; 10(6): M111.008771, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21502374

RESUMO

Nuclear Factor-κB (NF-κB) is a family of inducible transcription factors regulated by stimulus-induced protein interactions. In the cytoplasm, the NF-κB member RelA transactivator is inactivated by binding inhibitory IκBs, whereas in its activated state, the serine-phosphorylated protein binds the p300 histone acetyltransferase. Here we describe the isolation of a ssDNA aptamer (termed P028F4) that binds to the activated (IκBα-dissociated) form of RelA with a K(D) of 6.4 × 10(-10), and its application in an enrichment-mass spectrometric quantification assay. ssDNA P028F4 competes with cognate duplex high affinity NF-κB binding sites for RelA binding in vitro, binds activated RelA in eukaryotic nuclei and reduces TNFα-stimulated endogenous NF-κB dependent gene expression. Incorporation of P028F4 as an affinity isolation step enriches for serine 536 phosphorylated and p300 coactivator complexed RelA, simultaneously depleting IκBα·RelA complexes. A stable isotope dilution (SID)-selected reaction monitoring (SRM)- mass spectrometry (MS) assay for RelA was developed that produced a linear response over 1,000 fold dilution range of input protein and had a 200 amol lower limit of quantification. This multiplex SID-SRM-MS RelA assay was used to quantify activated endogenous RelA in cytokine-stimulated eukaryotic cells isolated by single-step P028F4 enrichment. The aptamer-SID-SRM-MS assay quantified the fraction of activated RelA in subcellular extracts, detecting the presence of a cytoplasmic RelA reservoir unresponsive to TNFα stimulation. We conclude that aptamer-SID-SRM-MS is a versatile tool for quantification of activated NF-κB/RelA and its associated complexes in response to pathway activation.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples/química , NF-kappa B/química , Fator de Transcrição RelA/química , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/farmacologia , Sequência de Bases , Ligação Competitiva , Calibragem , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatografia de Afinidade/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas I-kappa B/química , Marcação por Isótopo , Limite de Detecção , Dados de Sequência Molecular , Complexos Multiproteicos/química , NF-kappa B/genética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Espectrometria de Massas em Tandem/métodos , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
10.
Antioxidants (Basel) ; 11(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009301

RESUMO

Cystathionine-y-lyase (CSE) is a critical enzyme for hydrogen sulfide (H2S) biosynthesis and plays a key role in respiratory syncytial virus (RSV) pathogenesis. The transcription factor NRF2 is the master regulator of cytoprotective and antioxidant gene expression, and is degraded during RSV infection. While some evidence supports the role of NRF2 in CSE gene transcription, its role in CSE expression in airway epithelial cells is not known. Here, we show that RSV infection decreased CSE expression and activity in primary small airway epithelial (SAE) cells, while treatment with tert-butylhydroquinone (tBHQ), an NRF2 inducer, led to an increase of both. Using reporter gene assays, we identified an NRF2 response element required for the NRF2 inducible expression of the CSE promoter. Electrophoretic mobility shift assays demonstrated inducible specific NRF2 binding to the DNA probe corresponding to the putative CSE promoter NRF2 binding sequence. Using chromatin immunoprecipitation assays, we found a 50% reduction in NRF2 binding to the endogenous CSE proximal promoter in SAE cells infected with RSV, and increased binding in cells stimulated with tBHQ. Our results support the hypothesis that NRF2 regulates CSE gene transcription in airway epithelial cells, and that RSV-induced NRF2 degradation likely accounts for the observed reduced CSE expression and activity.

11.
Diagnostics (Basel) ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553102

RESUMO

Hormone receptor status is determined primarily to identify breast cancer patients who may benefit from hormonal therapy. The current clinical practice for the testing using either Allred score or H-score is still based on laborious manual counting and estimation of the amount and intensity of positively stained cancer cells in immunohistochemistry (IHC)-stained slides. This work integrates cell detection and classification workflow for breast carcinoma estrogen receptor (ER)-IHC-stained images and presents an automated evaluation system. The system first detects all cells within the specific regions and classifies them into negatively, weakly, moderately, and strongly stained, followed by Allred scoring for ER status evaluation. The generated Allred score relies heavily on accurate cell detection and classification and is compared against pathologists' manual estimation. Experiments on 40 whole-slide images show 82.5% agreement on hormonal treatment recommendation, which we believe could be further improved with an advanced learning model and enhancement to address the cases with 0% ER status. This promising system can automate the exhaustive exercise to provide fast and reliable assistance to pathologists and medical personnel. The system has the potential to improve the overall standards of prognostic reporting for cancer patients, benefiting pathologists, patients, and also the public at large.

12.
J Virol ; 84(18): 9533-45, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20610706

RESUMO

The respiratory epithelium plays a central role in innate immunity by secreting networks of inflammatory mediators in response to respiratory syncytial virus (RSV) infection. Previous proteomic studies focusing on the host cellular response to RSV indicated the existence of a nuclear heat shock response and cytoplasmic depletion of antioxidant proteins in model type II-like airway epithelial cells. Here, we increased the depth of nuclear proteomic interrogation by using fluorescence difference labeling followed by liquid isoelectric focusing prefractionation/two-dimensional gel electrophoresis (2-DE) to identify an additional 41 proteins affected by RSV infection. Surprisingly, we found inducible oligomers and shifts in isoelectric points for peroxiredoxin 1 (Prdx-1), Prdx-3, and Prdx-4 isoforms without changes in their total abundance, indicating that Prdxs were being oxidized in response to RSV. To address the role of Prdx-1 and Prdx-4 in RSV infection, isoforms were selectively knocked down by small interfering RNA (siRNA) transfection. Cells lacking Prdx-1, Prdx-4, or both showed increased levels of reactive oxygen species formation and a higher level of protein carbonylation in response to RSV infection. Using a novel saturation fluorescence labeling 2-DE analysis, we showed that 15 unique proteins had enhanced oxidative modifications of at least >1.2-fold in the Prdx knockdowns in response to RSV, including annexin A2 and desmoplakin. Our results suggest that Prdx-1 and Prdx-4 are essential for preventing RSV-induced oxidative damage in a subset of nuclear intermediate filament and actin binding proteins in epithelial cells.


Assuntos
Cisteína/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peroxirredoxinas/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Linhagem Celular , Células Epiteliais/virologia , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares , Oxirredução , Peroxirredoxinas/genética , Proteoma/análise , Espécies Reativas de Oxigênio/análise
13.
Front Neurol ; 12: 804113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222229

RESUMO

Myasthenia gravis (MG) is an autoimmune disease characterized by chronic muscle fatigue and weakness caused by autoantibodies and complement-mediated damage at neuromuscular junctions. Histone deacetylases (HDACs) are crucial epigenetic regulators of proinflammatory gene expression; however, it is unclear whether HDACs modulate chronic inflammation or autoantibody production associated with MG pathogenesis. We examined expression profiles and serum levels of key inflammatory cytokines (IL-6 and IL-21) and acetylcholine receptor (AChR)-specific autoantibodies following pharmacological inhibition of key HDAC isoforms in a mouse model of MG. We found that HDAC inhibition significantly reduced the production of IL-6, but not IL-21, in AChR-stimulated PBMCs and splenocytes (n = 5 per group). Trichostatin (pan-HDAC inhibitor) treatment of MG-PBMCs (n = 2) also exhibited reduced production of induced IL-6. Although HDAC1 inhibition lowered IL-6 levels the most, HDAC2 inhibition depleted intracellular IL-6 and markedly reduced serum anti-AChR IgG2b in EAMG mice. The transcriptomic profiling and pathway mapping also revealed that autoimmunity-linked, major cell signaling pathways were differentially altered by HDAC1/2 inhibition. HDAC inhibition-mediated reduction in IL-6 and autoantibody levels also correlated with milder disease and preservation of muscle AChR in the treated mice. Overall, our findings revealed isoform-specific functional variance of HDACs in reducing inflammation and identified HDAC-regulated many genes underlying specific inflammatory and autoantibody pathways in EAMG. Thus, the study provides a rationale for further research to evaluate the HDACs or their gene targets as a potential adjunct treatment for MG.

14.
J Virol ; 83(20): 10605-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19706715

RESUMO

Respiratory syncytial virus (RSV) is a human pathogen that induces airway inflammation, at least in part, by modulating gene expression programs in airway epithelial cells. The presence of RSV replication is detected by the intracellular retinoic acid-inducible gene I (RIG-I) RNA helicase that forms a productive signaling complex with the mitochondrion-anchored MAVS protein, resulting in nuclear translocation of the NF-kappaB transcription factor. Although nuclear translocation is a prerequisite for activation of the innate inflammatory response, recent studies show that separate pathways governing RelA activation are also required for target gene expression. In this study, we examine the mechanism of RelA phosphorylation and its requirement for RSV-induced gene expression. RSV infection produced a time-dependent RelA phosphorylation on serine (Ser) residues Ser-276 and Ser-536 in parallel with enhanced reactive oxygen species (ROS) stress. Inhibition of RSV-induced ROS inhibited formation of phospho-Ser-276 RelA without affecting phospho-Ser-536 RelA formation. RSV potently induced activation of cytoplasmic mitogen- and stress-related kinase 1 (MSK1) in an ROS-dependent manner. Inhibition of MSK1 using H89 and small interfering RNA knockdown both reduced RSV-induced phospho-Ser-276 RelA formation and expression of a subset of NF-kappaB-dependent genes. Direct examination of the role of phospho-Ser-276 in target gene expression by expression of a RelA Ser-276-to-Ala site mutation in RelA(-/-) mouse embryonic fibroblasts showed that the mutation was unable to mediate RSV-induced NF-kappaB-dependent gene expression. We conclude that RSV induces RelA activation in the innate inflammatory response via a pathway separate from that controlling RelA cytoplasmic release, mediated by ROS signaling to cytoplasmic MSK1 activation and RelA Ser-276 phosphorylation.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Espécies Reativas de Oxigênio/metabolismo , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Células Epiteliais/citologia , Células Epiteliais/virologia , Fibroblastos/citologia , Fibroblastos/virologia , Humanos , Pulmão/citologia , Pulmão/virologia , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/metabolismo
15.
Bioinformatics ; 24(20): 2363-9, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18713791

RESUMO

MOTIVATION: Interferon-beta induced JAK-STAT signaling pathways contribute to mucosal immune recognition and an anti-viral state. Though the main molecular mechanisms constituting these pathways are known, neither the detailed structure of the regulatory network, nor its dynamics has yet been investigated. The objective of this work is to build a mathematical model for the pathway that would serve two purposes: (1) to reproduce experimental results in simulation of both early and late response to Interferon-beta stimulation and (2) to explain experimental phenomena generating new hypotheses about regulatory mechanisms that cannot yet be tested experimentally. RESULTS: Experimentally determined time dependent changes in the major components of this pathway were used to build a mathematical model describing pathway dynamics in the form of ordinary differential equations. The experimental results suggested existence of unknown negative control mechanisms that were tested numerically using the model. Together, experimental and numerical data show that the epithelial JAK-STAT pathway might be subjected to previously unknown dynamic negative control mechanisms: (1) activation of dormant phosphatases and (2) inhibition of nuclear import of IRF1.


Assuntos
Interferon beta/metabolismo , Modelos Biológicos , Transdução de Sinais , Células HeLa , Humanos , Janus Quinases/metabolismo
16.
Cell Signal ; 19(7): 1419-33, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17317104

RESUMO

Tumor necrosis factor-alpha (TNF-alpha) is a potent mediator of inflammation, inducing expression of a gene network mediated by NF-kappaB. Previously we found that TNF-alpha-induced reactive oxygen species (ROS) production is required for NF-kappaB action because antioxidants inhibited TNF-alpha-inducible IL-8 expression without affecting its nuclear translocation. Here, we further investigated this ROS pathway controlling NF-kappaB/RelA dependent gene expression. We observed that TNF-alpha enhanced ROS production approximately 2-fold 20 min after stimulation and significantly increased oxidative DNA damage (8-oxoguanine lesions) over controls. Treatment with chemically unrelated antioxidants specifically inhibited expression of TNF-inducible NF-kappaB-dependent genes without producing detectable cytotoxicity or affecting GAPDH expression. We found that TNF-alpha-induced NF-kappaB/RelA Ser(276) phosphorylation, a modification critical for its transcriptional activity, was inhibited by abrogation of the ROS signaling pathway, whereas NF-kappaB/RelA Ser(536) phosphorylation was not. Interestingly, antioxidant treatment selectively inhibited TNF-alpha-induced catalytic activity of cAMP dependent protein kinase A (PKAc) but not mitogen-stress related kinase-1 (MSK1), kinases known to phosphorylate RelA at Ser(276). Using PKAc inhibitors and siRNA mediated PKAc knockdown, TNF-alpha-induced Ser(276) phosphorylation and IL-8 expression were both significantly reduced, indicating PKAc is required for RelA Ser(276) phosphorylation. Consistently, a site mutation of Rel A (Ser(276) to Ala) in RelA-deficient embryonic fibroblasts failed to activate IL-8 Luciferase activity in response to TNF-alpha. Furthermore, TNF-alpha-inducible NF-kappaB/RelA interaction with the co-activator CBP/p300, essential for enhanceosome formation, was attenuated by antioxidant treatment. Using chromatin immunoprecipitation assay (ChIP), we observed that recruitment of p300 and RNA polymerase II (Pol II) to the IL-8 promoter was also abrogated by antioxidant. These results indicate that the ROS-mediated TNF-alpha-induced IL-8 transcription is regulated by NF-kappaB/RelA phosphorylation at the critical Ser(276) residue by PKAc, resulting in stable enhanceosome formation on target genes. These studies provide insight into a novel antioxidant-sensitive pathway that can be targeted to inhibit NF-kappaB-mediated inflammation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfosserina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antioxidantes/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dimetil Sulfóxido/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células U937 , Fatores de Transcrição de p300-CBP/metabolismo
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 632-635, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440476

RESUMO

Hormone receptor status in breast carcinoma is determined primarily to identify patients who may benefit from hormonal therapy. Estrogen receptor (ER) is one of the hormone receptor positive factors which have been recognized as a marker for which women with breast cancer would respond to hormone treatment. We propose a system to classify cells in ER-stained whole slide breast carcinoma images according to their staining strength using convolutional neural network (CNN). The proposed CNN multiclass classifier was tested on a region of 1200 cells, and achieved very promising results, with overall accuracy of 88.8% and AUC score of 97.5%. The proposed system is useful for use in hormone receptor testing, where the outcomes are used to decide whether the cancer is likely to respond to hormonal therapy or other treatments.


Assuntos
Neoplasias da Mama/classificação , Redes Neurais de Computação , Receptores de Estrogênio/análise , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Feminino , Humanos
18.
Front Immunol ; 9: 2413, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405613

RESUMO

APS is an autoimmune disease in which antiphospholipid antibodies (aPL) cause vascular thrombosis and pregnancy morbidity. In patients with APS, aPL exert pathogenic actions by binding serum beta-2-glycoprotein I (ß2GPI) via its N-terminal domain I (DI). We previously showed that bacterially-expressed recombinant DI inhibits biological actions of IgG derived from serum of patients with APS (APS-IgG). DI is too small (7 kDa) to be a viable therapeutic agent. Addition of polyethylene glycol (PEGylation) to small molecules enhances the serum half-life, reduces proteolytic targeting and can decrease immunogenicity. It is a common method of tailoring pharmacokinetic parameters and has been used in the production of many therapies in the clinic. However, PEGylation of molecules may reduce their biological activity, and the size of the PEG group can alter the balance between activity and half-life extension. Here we achieve production of site-specific PEGylation of recombinant DI (PEG-DI) and describe the activities in vitro and in vivo of three variants with different size PEG groups. All variants were able to inhibit APS-IgG from: binding to whole ß2GPI in ELISA, altering the clotting properties of human plasma and promoting thrombosis and tissue factor expression in mice. These findings provide an important step on the path to developing DI into a first-in-class therapeutic in APS.


Assuntos
Síndrome Antifosfolipídica/etiologia , Síndrome Antifosfolipídica/metabolismo , Coagulação Sanguínea , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Domínios e Motivos de Interação entre Proteínas , beta 2-Glicoproteína I/metabolismo , Adulto , Animais , Anticorpos Antifosfolipídeos/sangue , Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/sangue , Síndrome Antifosfolipídica/diagnóstico , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ligação Proteica , Domínios Proteicos , Trombose/sangue , Trombose/etiologia , Trombose/metabolismo , beta 2-Glicoproteína I/química
19.
J Steroid Biochem Mol Biol ; 107(3-5): 253-61, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17689241

RESUMO

There is strong evidence that catechol-O-methyl transferase (COMT) protects breast cells against estrogen-induced cancer by detoxifying catecholestrogens, the carcinogenic estrogen metabolites. COMT gene expression is controlled by two promoters - a proximal promoter (COMTP1) and a distal promoter (COMTP2) - that regulate the expression of soluble (S-COMT) and membrane-bound (MB-COMT) isoforms, respectively. We investigated the transcriptional regulation of the COMT gene by progesterone/progesterone receptors in breast cancer cells. Our results indicated that progesterone (P4) downregulates COMT gene expression in breast cancer cell lines. In addition, the COMTP1 and COMTP2 harbor several progesterone response elements (PREs). Electrophoretic mobility shift assay (EMSA) indicated that nuclear extracts of T47D cells bind to the identified PREs in COMTP1. Site-directed mutagenesis of PREs in COMTP1 not only reversed the P4-induced inhibition of COMTP1, but also increased its basal activity. The two progesterone receptor isoforms, PR-A and PR-B, were found to have opposite effects on the regulation of P4 in COMT expression; PR-A is associated with P4-induced upregulation of COMT, while PR-B is associated with P4-induced downregulation of COMT. In summary, our data demonstrated that P4 downregulates the COMT gene expression through multiple PREs in the COMT promoters and that different progesterone receptor isoforms have distinctive effects on COMT gene expression.


Assuntos
Neoplasias da Mama/enzimologia , Catecol O-Metiltransferase/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Progesterona/farmacologia , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/metabolismo , Sequência de Bases , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Primers do DNA , Regulação para Baixo , Humanos , RNA Mensageiro/genética
20.
Cell Death Dis ; 8(2): e2606, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28182006

RESUMO

Transdifferentiation of quiescent dermal fibroblasts to secretory myofibroblasts has a central role in wound healing and pathological scar formation. This myofibroblast transdifferentiation process involves TGFß-induced de novo synthesis of alpha smooth muscle cell actin (αSMA)+ fibers that enhance contractility as well as increased expression of extracellular matrix (ECM) proteins, including collagen and fibronectin. These processes are mediated upstream by the reactive oxygen species (ROS)-producing enzyme Nox4, whose induction by TGFß is incompletely understood. In this study, we demonstrate that Nox4 is involved in αSMA+ fiber formation and collagen production in primary human dermal fibroblasts (hDFs) using a small-molecule inhibitor and siRNA-mediated silencing. Furthermore, TGFß-induced signaling via Smad3 is required for myofibroblast transformation and Nox4 upregulation. Immunoprecipitation-selected reaction monitoring (IP-SRM) assays of the activated Smad3 complex suggest that it couples with the epigenetic reader and transcription co-activator bromodomain and extraterminal (BET) domain containing protein 4 (BRD4) to promote Nox4 transcription. In addition, cyclin-dependent kinase 9 (CDK9), a component of positive transcription elongation factor, binds to BRD4 after TGFß stimulation and is also required for RNA polymerase II phosphorylation and Nox4 transcription regulation. Surprisingly, BRD4 depletion decreases myofibroblast differentiation but does not affect collagen or fibronectin expression in primary skin fibroblasts, whereas knockdown of CDK9 decreases all myofibroblast genes. We observe enhanced numbers and persistence of myofibroblast formation and TGFß signaling in hypertrophic scars. BRD4 inhibition reverses hypertrophic skin fibroblast transdifferentiation to myofibroblasts. Our data indicate that BRD4 and CDK9 have independent, coordinated roles in promoting the myofibroblast transition and suggest that inhibition of the Smad3-BRD4 pathway may be a useful strategy to limit hypertrophic scar formation after burn injury.


Assuntos
Transdiferenciação Celular/fisiologia , Quinase 9 Dependente de Ciclina/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adolescente , Proteínas de Ciclo Celular , Células Cultivadas , Criança , Pré-Escolar , Colágeno/metabolismo , Feminino , Fibronectinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Miofibroblastos/fisiologia , NADPH Oxidase 4 , Transdução de Sinais/fisiologia , Proteína Smad3 , Regulação para Cima/fisiologia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA