Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Langmuir ; 36(45): 13396-13407, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141589

RESUMO

The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a "cleaning effect". Moreover, "coffee-ring" effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.

2.
Soft Matter ; 16(32): 7613-7623, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32728681

RESUMO

Surface topography designed to achieve spatial segregation has shown promise in delaying bacterial attachment and biofilm growth. However, the underlying mechanisms linking surface topography to the inhibition of microbial attachment and growth still remain unclear. Here, we investigated bacterial attachment, cell alignment and biofilm formation of Pseudomonas aeruginosa on periodic nano-pillar surfaces with different pillar spacing. Using fluorescence and scanning electron microscopy, bacteria were shown to align between the nanopillars. Threadlike structures ("bacterial nanotubes") protruded from the majority of bacterial cells and appeared to link cells directly with the nanopillars. Using ΔfliM and ΔpilA mutants lacking flagella or pili, respectively, we further demonstrated that cell alignment behavior within nano-pillars is independent of the flagella or pili. The presence of bacteria nanotubes was found in all cases, and is not linked to the expression of flagella or pili. We propose that bacterial nanotubes are produced to aid in cell-surface or cell-cell connections. Nano-pillars with smaller spacing appeared to enhance the extension and elongation of bacterial nanotube networks. Therefore, nano-pillars with narrow spacing can be easily overcome by nanotubes that connect isolated bacterial aggregates. Such nanotube networks may aid cell-cell communication, thereby promoting biofilm development.


Assuntos
Fímbrias Bacterianas , Nanotubos , Aderência Bacteriana , Biofilmes , Flagelos , Pseudomonas aeruginosa
3.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31182499

RESUMO

Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biomecânicos , Regulação Bacteriana da Expressão Gênica
4.
Langmuir ; 35(45): 14670-14680, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31630525

RESUMO

A variety of natural surfaces exhibit antibacterial properties; as a result, significant efforts in the past decade have been dedicated toward fabrication of biomimetic surfaces that can help control biofilm growth. Examples of such surfaces include rose petals, which possess hierarchical structures like the micropapillae measuring tens of microns and nanofolds that range in the size of 700 ± 100 nm. We duplicated the natural structures on rose petal surfaces via a simple UV-curable nanocasting technique and tested the efficacy of these artificial surfaces in preventing biofilm growth using clinically relevant bacteria strains. The rose petal-structured surfaces exhibited hydrophobicity (contact angle (CA) ≈ 130.8° ± 4.3°) and high CA hysteresis (∼91.0° ± 4.9°). Water droplets on rose petal replicas evaporated following the constant contact line mode, indicating the likely coexistence of both Cassie and Wenzel states (Cassie-Baxter impregnating the wetting state). Fluorescence microscopy and image analysis revealed the significantly lower attachment of Staphylococcus epidermidis (86.1 ± 6.2% less) and Pseudomonas aeruginosa (85.9 ± 3.2% less) on the rose petal-structured surfaces, compared with flat surfaces over a period of 2 h. An extensive biofilm matrix was observed in biofilms formed by both species on flat surfaces after prolonged growth (several days), but was less apparent on rose petal-biomimetic surfaces. In addition, the biomass of S. epidermidis (63.2 ± 9.4% less) and P. aeruginosa (76.0 ± 10.0% less) biofilms were significantly reduced on the rose petal-structured surfaces, in comparison to the flat surfaces. By comparing P. aeruginosa growth on representative unitary nanopillars, we demonstrated that hierarchical structures are more effective in delaying biofilm growth. The mechanisms are two-fold: (1) the nanofolds across the hemispherical micropapillae restrict initial attachment of bacterial cells and delay the direct contact of cells via cell alignment and (2) the hemispherical micropapillae arrays isolate bacterial clusters and inhibit the formation of a fibrous network. The hierarchical features on rose petal surfaces may be useful for developing strategies to control biofilm formation in medical and industrial contexts.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Rosa/química , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície
5.
Biofilm ; 8: 100209, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39071175

RESUMO

The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm Pseudomonas fluorescens. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.

6.
J Assist Reprod Genet ; 30(11): 1505-12, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979130

RESUMO

PURPOSE: To investigate the Homeobox genes HOXA-10 and HOXA-11 mediated endometrial molecular defects during implantation window in endometriosis-associated infertility cases. METHODS: Endometrial biopsies were obtained during implantation window from 31 infertile women with endometriosis (age < 35 years) and 26 age and BMI-matched infertile women without endometriosis were included in the study for comparison purposes. Endometrial expression of HOXA-10 and HOXA-11 genes, MMP-2, -9, α(v)ß(3) integrin, leukemia inhibitory factor and surface characteristics including average roughness and topology were assessed. RESULTS: A significantly lower expression of HOXA-10 and HOXA-11 were observed in endometriotic women compared to non-endometriotic controls. Further, a significantly higher endometrial expression of MMP-2 and -9 were observed in women with endometriosis when compared with controls. Interestingly, endometrial surface were observed to be grossly affected in terms of average roughness and topology in women with endometriosis compared to controls. CONCLUSIONS: The findings suggest that aberrant expression of HOXA-10 and -11 genes adversely affects endometrial remodelling and expression of receptivity markers.


Assuntos
Endometriose/patologia , Proteínas de Homeodomínio/metabolismo , Infertilidade Feminina/patologia , Adulto , Western Blotting , Estudos de Casos e Controles , Implantação do Embrião , Endometriose/complicações , Endometriose/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Feminino , Citometria de Fluxo , Proteínas Homeobox A10 , Proteínas de Homeodomínio/genética , Humanos , Técnicas Imunoenzimáticas , Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Microscopia de Força Atômica , Reação em Cadeia da Polimerase em Tempo Real
7.
Biosensors (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979561

RESUMO

Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Grafite , Nanoestruturas , Animais , Técnicas Biossensoriais/métodos
8.
Hum Immunol ; 84(12): 110724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932183

RESUMO

Cervical cancer is the second-most prevalent gynecologic cancer in India. It is typically detected in women between the ages of 35 and 44. Cervical cancer is mainly associated with the human papillomavirus (HPV). The report shows that 70 % of cervical cancer is caused by HPV 16 and 18. There are few therapeutic options and vaccines available for cervical cancer treatment and γδ T cell therapy is one of them. This therapy can kill various types of cancers, including cervical cancer. The major γδ T cell subset is the Vγ9Vδ2 T cell, mainly distributed in peripheral blood which recognize non-MHC peptide antigens and can eliminate MHC-downregulated cancer. Moreover, γδ T cells can express different types of receptors that bind to the molecules of stressed cells, often produced on cancerous cells but absent from healthy tissue. γδ T cells possess both direct and indirect cytotoxic capabilities against malignancies and show potential antitumoral responses. However, γδ T cells also encourage the progression of cancer. Cancer immunotherapy using γδ T cells will be a potential cancer treatment, as well as cervical cancer. This review focused on the γδ T cell and its function in cancer, with special emphasis on cervical cancer. It also focused on the ligand recognition site of γδ T cells, galectin-mediated therapy and pamidronate-treated therapy for cervical cancer. Instead of the great potential of γδ T cell for the eradication of cervical cancer, no comprehensive in-depth review is available to date, so there is a need to jot down the various roles and modes of action and different applications of γδ T cells for cancer research, which we believe will be a handy tool for the researchers and the readers.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Adulto , Neoplasias do Colo do Útero/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Imunoterapia , Pamidronato , Índia
9.
Adv Sci (Weinh) ; 10(27): e2207373, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522628

RESUMO

Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (ϕ) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in ϕ, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm ϕ is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.


Assuntos
Biofilmes , Matriz Extracelular , Vidro
10.
SN Comput Sci ; 2(6): 465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568837

RESUMO

Classical susceptible-infected-removed model with constant transmission rate and removal rate may not capture real world dynamics of epidemic due to complex influence of multiple external factors on the spread and spatio-temporal variation of transmission rate. Also, explainability of a model is of prime necessity to understand the influence of multiple factors on transmission rate. Thus, we modified discrete global susceptible-infected-removed model with time-varying transmission rate, recovery rate and multiple spatially local models. We have derived the criteria for disease-free equilibrium within a specific time period. A convolutional LSTM model is created and trained to map multiple spatiotemporal features to transmission rate. The model achieved 8.39% mean absolute percent error in terms of cumulative infection cases in each locality in a region in USA for a 10-day prediction period. Comparison with current state of the art methods reveals performance superiority of the proposed method. A perturbation-based spatio-temporal model interpretation method is proposed which generates spatio-temporal local interpretations. Global interpretations are generated by statistically accumulating the local interpretations. Global interpretations of transmission rate for a region in USA shows consistent positive influence of population density, whereas, temperature and humidity have very minor influence. An experiment with what-if scenario reveals locality specific quick identification of positive cases, rapid isolation and improving healthcare facilities are keys to rapid convergence to disease-free equilibrium. A long-term forecasting of 160 days predicts new infection cases in a region in USA with a median error of 455 cases.

11.
Anal Chim Acta ; 1146: 146-154, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461710

RESUMO

Endometriosis is one of the important issues in women worldwide, which decreases the quality of women's lives in their reproductive age. The diagnosis of endometriosis is carried out by the invasive procedure, which is expensive and painful. In the last few decades, researchers have given more attention to constructing a suitable biomarker-based biosensor for semi/non-invasive diagnosis of endometriosis. As a result, glycodelin (GLY) was found as a promising biomarker because of its selectivity and sensitivity. To the best of our knowledge, it was the first study that reported the detection of GLY biomarker using an electrochemical immunosensor. Briefly, a label-free electrochemical immunosensing platform was constructed through in-situ surface modification of cysteamine layer and immobilisation of antibody (anti-GLY) with help of glutaraldehyde. The interaction between antigen and antibody was measured using square wave voltammetry (SWV). The SWV signal could decrease proportionally with the increasing GLY concentration ranging from 1 to 1000 ng mL-1 (R2 = 0.9981) and a detection limit (LOD) of 0.43 ng mL-1. Moreover, an immunosensor could exhibit high sensitivity, selectivity, long-term stability, reproducibility and regeneration. Accuracy of the immunosensor was compared with enzyme-linked immunosorbent assay (ELISA), and satisfying results were obtained. The detection of GLY biomarker may be a new possibility for endometriosis diagnosis.


Assuntos
Técnicas Biossensoriais , Endometriose , Nanopartículas Metálicas , Biomarcadores , Técnicas Eletroquímicas , Endometriose/diagnóstico , Feminino , Glicodelina , Ouro , Humanos , Imunoensaio , Limite de Detecção , Reprodutibilidade dos Testes
12.
Bioelectrochemistry ; 139: 107740, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33524653

RESUMO

In this research, for the first time, a bio-nanocomposites based highly sensitive and label-free electrochemical immunosensor is reported with the aim of endometriosis diagnostics application. Multiwalled carbon nanotube and magnetite nanoparticle (MWCNT-Fe3O4) was dispersed in chitosan (CS) to fabricate a bio-nanocomposite to immobilize very monoclonal specific antibody (via cross-linking using glutaraldehyde) for selective electrochemical immuno-sensing of carbohydrate antigen 19-9 (CA19-9), a potential biomarker for endometriosis diagnostics. Well-characterized Anti-AbsCA19-9/CS-MWCNT-Fe3O4 immune-electrode fabricated on glassy carbon electrode (GCE) successfully detect CA 19-9 and exhibited a high sensitivity as (2.55 µA pg-1 cm-1), a detection limit of 0.163 pg mL-1, detection range from 1.0 pg mL-1 to 100 ng mL-1. Our fabricated electrochemical AbsCA19-9/CS-MWCNT-Fe3O4 immunosensor performed CA19-9 sensing in physiological range and at a very level which suggest it application for early-stage diagnostics, diseases monitoring, and optimization of therapy. To claim the clinical application, our sensor was tested using real samples and sensing performance was validated using enzyme-linked immune-sorbent assay (ELISA). The results of the studies projected AbsCA19-9/CS-MWCNT-Fe3O4 electrochemical CA19-9 immunosensor as a potential and affordable alternate of conventional techniques like ELISA. We believe that our fabricated sensor can be the plane of a disease's management program due to affordable, rapid, label-free, and sensitive detection of a targeted biomarker.


Assuntos
Antígenos Glicosídicos Associados a Tumores/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Endometriose/diagnóstico , Imunoensaio/métodos , Testes Imediatos , Quitosana/química , Eletrodos , Feminino , Ouro/química , Grafite/química , Humanos , Limite de Detecção , Nanopartículas de Magnetita/química , Nanocompostos/química , Nanotubos de Carbono/química , Sensibilidade e Especificidade
13.
J Nanosci Nanotechnol ; 20(7): 3994-4004, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968413

RESUMO

Nano drug delivery systems are widely used in cancer treatment nowadays. It is used to accomplish a remarkable drug therapeutic index to increase the efficacy of nanocomposites against cancer cells without affecting the other cells. Ceramic nanoparticles are well-known to carry chemotherapeutic drugs to the infected sites. Interest in them is aroused by their potential for application as promising biomaterials, especially in various orthopaedic applications. In the current study, Hydroxyapatite (HAp) was prepared by a simple in situ precipitation method and coated with a potent anticancer drug doxorubicin (DOX) using poly(lactide-co-glycolide) (PLGA) polymer. The interfacial strength of the composite is enhanced by the use of polymer in the nanocomposite preparation. An interaction between HAp particle and PLGA matrix has been noticed, which leads to improve the physicochemical properties of the prepared composites. Such a novel nanocomposite is further physicochemically characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Spectroscopy (TEM) and Particle Size Distribution (PSD). In addition, the biocompatibility and the anticancer activity of the nanocomposite were evaluated by a colorimetric assay (MTT assay). The synthesized DOX-HAp-PLGA nanocomposite shows a significant cytotoxicity towards osteosarcoma cells, which may be potentially used as an anticancer agent against osteosarcoma diseases.


Assuntos
Nanocompostos , Osteossarcoma , Doxorrubicina/farmacologia , Durapatita , Humanos , Osteossarcoma/tratamento farmacológico , Poliglactina 910 , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ACS Appl Bio Mater ; 3(11): 7620-7630, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019502

RESUMO

Endometriosis is the third most prominent gynecological disorder. Cancer antigen 125 (CA 125) is the primary serum marker used for late-stage endometriosis diagnosis and management. Herein, we developed a label-free immunosensor for electrochemical detection of CA 125 for endometriosis blood serum samples. The sensor was fabricated by one-step electrochemical deposition of highly conductive gold nanoparticles (AuNPs) and reduced graphene oxide (RGO) nanocomposite, via one-step electrochemical deposition. This method involved in situ reduction of HAuCl3 and graphene oxide and increased electrocatalytic performance. Different analytical techniques confirmed the morphology and structure of the AuNP/RGO nanocomposite. In addition, the antibody (Ab) was immobilized on the modified electrode surface through the self-assembly monolayer. The square wave voltammetry method has been utilized to measure the interaction of Ab and antigen (Ag). The as-fabricated sensor demonstrates a dynamic linear range of 0.0001 → 300 U mL-1 and lower limit of detection is 0.000042 U mL-1 toward CA125 detection. The developed sensor provides acceptable stability, high selectivity, and reproducibility. The proposed immunosensor has been applied to the CA 125 detection in endometriosis patient blood samples, and the results confirm the reliability of the as-fabricated sensor that is further associated with the standard ELISA analysis. The AuNP/RGO-based sensor can be used as an excellent tool for future prospective clinical diagnostics applications.

15.
Avicenna J Med Biotechnol ; 12(2): 77-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431791

RESUMO

BACKGROUND: Dengue burden is increasing day-by-day globally. A rapid, sensitive, cost-effective early diagnosis kit is the need of the hour. In this study, a label-free electrochemical immunosensor was proposed for dengue virus detection. A modified Polyaniline (PANI) coated Glassy Carbon (GC) electrode, immobilized with DENV NS1 antibody was used to detect the circulating DENV NS1 antigen in both spiked and infected sample. METHODS: Cloning, purification and expression of DENV NS1 protein in Escherichia coli (E. coli) was performed and sensor design, PANI modification on GC electrode surface by electrochemical polymerization and immobilization of NS1 antibody on the modified electrode surface was done and finally the analytical performance of the electrochemical immunosensor was done using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). RESULTS: CV and EIS were used to study and quantitate the circulating DENV antigen. The calibration curve showed wide linearity, good sensitivity (Slope=13.8% IpR/ml.ng -1) and distribution of data with a correlation coefficient (R) of 0.997. A lower Limit of Detection (LOD) was found to be 0.33 ng.ml -1 which encourages the applicability of the sensor. CONCLUSION: Thus, a PANI based new electrochemical immunosensor has been developed which has the potential to be further modified for the development of cost effective, point of care dengue diagnostic kit.

16.
ACS Nano ; 14(8): 9938-9952, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32667780

RESUMO

We present a method to probe molecular and nanoparticle diffusion within thin, solvated polymer coatings. The device exploits the confinement with well-defined geometry that forms at the interface between a planar and a hemispherical surface (of which at least one is coated with polymers) in close contact and uses this confinement to analyze diffusion processes without interference of exchange with and diffusion in the bulk solution. With this method, which we call plane-sphere confinement microscopy (PSCM), information regarding the partitioning of molecules between the polymer coating and the bulk liquid is also obtained. Thanks to the shape of the confined geometry, diffusion and partitioning can be mapped as a function of compression and concentration of the coating in a single experiment. The method is versatile and can be integrated with conventional optical microscopes; thus it should find widespread use in the many application areas exploiting functional polymer coatings. We demonstrate the use of PSCM using brushes of natively unfolded nucleoporin domains rich in phenylalanine-glycine repeats (FG domains). A meshwork of FG domains is known to be responsible for the selective transport of nuclear transport receptors (NTRs) and their macromolecular cargos across the nuclear envelope that separates the cytosol and the nucleus of living cells. We find that the selectivity of NTR uptake by FG domain films depends sensitively on FG domain concentration and that the interaction of NTRs with FG domains obstructs NTR movement only moderately. These observations contribute important information to better understand the mechanisms of selective NTR transport.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Polímeros , Transporte Ativo do Núcleo Celular , Difusão , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/metabolismo
17.
NPJ Biofilms Microbiomes ; 6(1): 19, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286319

RESUMO

Bacterial biofilms in natural and artificial environments perform a wide array of beneficial or detrimental functions and exhibit resistance to physical as well as chemical perturbations. In dynamic environments, where periodic or aperiodic flows over surfaces are involved, biofilms can be subjected to large shear forces. The ability to withstand these forces, which is often attributed to the resilience of the extracellular matrix. This attribute of the extracellular matrix is referred to as viscoelasticity and is a result of self-assembly and cross-linking of multiple polymeric components that are secreted by the microbes. We aim to understand the viscoelastic characteristic of biofilms subjected to large shear forces by performing Large Amplitude Oscillatory Shear (LAOS) experiments on four species of bacterial biofilms: Bacillus subtilis, Comamonas denitrificans, Pseudomonas fluorescens and Pseudomonas aeruginosa. We find that nonlinear viscoelastic measures such as intracycle strain stiffening and intracycle shear thickening for each of the tested species, exhibit subtle or distinct differences in the plot of strain amplitude versus frequency (Pipkin diagram). The biofilms also exhibit variability in the onset of nonlinear behaviour and energy dissipation characteristics, which could be a result of heterogeneity of the extracellular matrix constituents of the different biofilms. The results provide insight into the nonlinear rheological behaviour of biofilms as they are subjected to large strains or strain rates; a situation that is commonly encountered in nature, but rarely investigated.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Comamonas/fisiologia , Matriz Extracelular/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas fluorescens/fisiologia , Reologia , Viscosidade
18.
Ann Lab Med ; 40(5): 390-397, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32311852

RESUMO

BACKGROUND: The effect of the interplay among inflammation, angiogenesis, extracellular matrix (ECM) degradation, and oxidative stress (OS) on the pathogenesis of endometriosis remains unclear. Previously, we demonstrated the role of OS in endometriosis. Here, we performed a comprehensive investigation of several molecules involved in inflammation, angiogenesis, and ECM degradation in women with endometriosis to study their interplay with OS. METHODS: Blood samples were collected from women with endometriosis (N=80), as well as from women with tubal factor infertility as controls (N=80). Interleukin (IL)-1ß, tumor necrosis factor-alpha, interferon-gamma, transforming growth factor-beta, IL-4, -10, -2, -6, -8, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, -9, tissue inhibitor of metalloproteinases (TIMP)-1, -2, and cyclooxygenase (COX)-2 levels in serum samples were measured using an ELISA. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in peripheral blood mononuclear cells was measured using flow cytometry. RESULTS: Cytokines, VEGF, MMPs, and COX-2 were significantly higher and TIMPs were significantly lower in patients with endometriosis. Multivariate statistical analysis indicated that IL-10 was the most significant variable capable of discriminating endometriosis samples from controls. CONCLUSIONS: Deregulation of NF-κB activation by OS affects the expression of various cytokines in endometriosis. Elevated cytokine levels further up-regulate IL-10, which subsequently activates the MMPs, leading to excessive ECM degradation and angiogenesis. Moreover, IL-10 emerged as the most important molecule involved in the pathogenesis of endometriosis. Measurement of these molecules may help in better management of the patients with endometriosis.


Assuntos
Citocinas/sangue , Citocinas/metabolismo , Endometriose/patologia , Matriz Extracelular/metabolismo , Estresse Oxidativo , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Ciclo-Oxigenase 2/sangue , Análise Discriminante , Endometriose/metabolismo , Estrogênios/sangue , Feminino , Humanos , Interleucina-10/sangue , Metaloproteinase 2 da Matriz/sangue , Análise Multivariada , NF-kappa B/metabolismo , Análise de Componente Principal , Estudos Retrospectivos , Inibidor Tecidual de Metaloproteinase-1/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
20.
Sci Rep ; 8(1): 1071, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348582

RESUMO

Titanium-based implants are ubiquitous in the healthcare industries and often suffer from bacterial attachment which results in infections. An innovative method of reducing bacterial growth is to employ nanostructures on implant materials that cause contact-dependent cell death by mechanical rupture of bacterial cell membranes. To achieve this, we synthesized nanostructures with different architectures on titanium surfaces using hydrothermal treatment processes and then examined the growth of Staphylococcus epidermidis on these surfaces. The structure obtained after a two-hour hydrothermal treatment (referred to as spear-type) showed the least bacterial attachment at short times but over a period of 6 days tended to support the formation of thick biofilms. By contrast, the structure obtained after a three-hour hydrothermal treatment (referred to as pocket-type) was found to delay biofilm formation up to 6 days and killed 47% of the initially attached bacteria by penetrating or compressing the bacteria in between the network of intertwined nano-spears. The results point to the efficacy of pocket-type nanostructure in increasing the killing rate of individual bacteria and potentially delaying longer-term biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Nanoestruturas/química , Nanoestruturas/microbiologia , Staphylococcus epidermidis/fisiologia , Titânio/química , Antibacterianos/química , Aderência Bacteriana , Membrana Celular/ultraestrutura , Viabilidade Microbiana , Nanoestruturas/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA