Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37111630

RESUMO

Globally, diabetic mellitus (DM) is a common metabolic disease that effectively inhibits insulin production, destroys pancreatic ß cells, and consequently, promotes hyperglycemia. This disease causes complications, including slowed wound healing, risk of infection in wound areas, and development of chronic wounds all of which are significant sources of mortality. With an increasing number of people diagnosed with DM, the current method of wound healing does not meet the needs of patients with diabetes. The lack of antibacterial ability and the inability to sustainably deliver necessary factors to wound areas limit its use. To overcome this, a new method of creating wound dressings for diabetic patients was developed using an electrospinning methodology. The nanofiber membrane mimics the extracellular matrix with its unique structure and functionality, owing to which it can store and deliver active substances that greatly aid in diabetic wound healing. In this review, we discuss several polymers used to create nanofiber membranes and their effectiveness in the treatment of diabetic wounds.

2.
Macromol Biosci ; 23(3): e2200346, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36469016

RESUMO

Over the years, scientists have studied the behavior and anatomy of many animals to understand the own species. However, despite the continuous efforts, it is often difficult to know for certain how the brain works due to the differences between the brains of animals and the human brain. While the use of animal models for research continues, the origin of human cognition and neurological disorders needs further elucidation. To that end, in vitro organoids that exhibit in vivo characteristics of the human brain have been recently developed. These brain-like organoids enable researchers to dive deeper into understanding the human brain, its neurological structures, and the causes of neurological pathologies. This paper reviews the recent developments in the regeneration of brain-like organoids using Matrigel and other alternatives. Further, gel-free methods that may enhance the regeneration process of organoids are discussed. Finally, the vascularized brain organoid growth and development in both in vitro and in vivo conditions are detailed.


Assuntos
Encéfalo , Organoides , Animais , Humanos , Encéfalo/patologia , Modelos Animais
3.
J Mater Chem B ; 11(27): 6225-6248, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309580

RESUMO

Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Engenharia Tecidual/métodos , Nanotubos de Carbono/química , Osso e Ossos , Materiais Biocompatíveis/química , Durapatita/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA