Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Biol Chem ; : 107567, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002685

RESUMO

The Golgi compartment performs a number of crucial roles in the cell. However, the exact molecular mechanisms underlying these actions are not fully defined. Pathogenic mutations in genes encoding Golgi proteins may serve as an important source for expanding our knowledge. For instance, mutations in the gene encoding Transmembrane protein 165 (TMEM165) were discovered as a cause of a new type of congenital disorder of glycosylation (CDG). Comprehensive studies of TMEM165 in different model systems, including mammals, yeast, and fish uncovered the new realm of Mn2+ homeostasis regulation. TMEM165 was shown to act as a Ca2+/Mn2+:H+ antiporter in medial- and trans-Golgi network, pumping the metal ions into the Golgi lumen and protons outside. Disruption of TMEM165 antiporter activity results in defects in N- and O-glycosylation of proteins and glycosylation of lipids. An impaired glycosylation of TMEM165-CDG arises from lack of Mn2+ within the Golgi. Nevertheless, Mn2+ insufficiency in the Golgi is compensated by the activity of the ATPase SERCA2. TMEM165 turnover has also been found to be regulated by Mn2+ cytosolic concentration. Besides causing CDG, recent investigations have demonstrated the functional involvement of TMEM165 in several other pathologies including cancer and mental health disorders. This systematic review summarizes the available information on TMEM165 molecular structure, cellular function, and its roles in health and disease.

2.
J Pharmacol Exp Ther ; 389(1): 34-39, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336381

RESUMO

Emerging evidence indicates that the relationship between coronavirus disease 2019 (COVID-19) and diabetes is 2-fold: 1) it is known that the presence of diabetes and other metabolic alterations poses a considerably high risk to develop a severe COVID-19; 2) patients who survived a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have an increased risk of developing new-onset diabetes. However, the mechanisms underlying this association are mostly unknown, and there are no reliable biomarkers to predict the development of new-onset diabetes. In the present study, we demonstrate that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells reliably predicts the risk of developing new-onset diabetes in COVID-19. This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. SIGNIFICANCE STATEMENT: We demonstrate for the first time that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells is able to reliably predict the risk of developing diabetes after having contracted coronavirus disease 2019 (COVID-19). This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. Our findings are also relevant when considering the emerging importance of post-acute sequelae of COVID-19, with systemic manifestations observed even months after viral negativization (long COVID).


Assuntos
COVID-19 , Diabetes Mellitus , Dislipidemias , Hipertensão , MicroRNAs , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Células Endoteliais , Progressão da Doença
3.
J Pharmacol Exp Ther ; 384(1): 109-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772782

RESUMO

We hypothesized that exosomal microRNAs could be implied in the pathogenesis of thromboembolic complications in coronavirus disease 2019 (COVID-19). We isolated circulating exosomes from patients with COVID-19, and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for the internalization of the "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), including angiotensin converting enzyme 2, transmembrane protease serine 2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared with cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. SIGNIFICANCE STATEMENT: This work demonstrates for the first time that two specific microRNAs (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. These findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long COVID.


Assuntos
COVID-19 , Exossomos , MicroRNAs , Síndrome de COVID-19 Pós-Aguda , Trombose , Humanos , COVID-19/complicações , Células Endoteliais , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/metabolismo , SARS-CoV-2 , Trombose/genética , Trombose/metabolismo , Trombose/virologia , Exossomos/metabolismo
4.
J Pharmacol Exp Ther ; 384(1): 116-122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549862

RESUMO

Endothelial dysfunction represents a key mechanism underlying heart failure with preserved ejection fraction (HFpEF), diabetes mellitus (DM), and frailty. However, reliable biomarkers to monitor endothelial dysfunction in these patients are lacking. In this study, we evaluated the expression of a panel of circulating microRNAs (miRs) involved in the regulation of endothelial function in a population of frail older adults with HFpEF and DM treated for 3 months with empagliflozin, metformin, or insulin. We identified a distinctive pattern of miRs that were significantly regulated in HFpEF patients compared to healthy controls and to HFpEF patients treated with the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin. Three miRs were significantly downregulated (miR-126, miR-342-3p, and miR-638) and two were significantly upregulated (miR-21 and miR-92) in HFpEF patients compared to healthy controls. Strikingly, two of these miRs (miR-21 and miR-92) were significantly reduced in HFpEF patients after the 3-month treatment with empagliflozin, whereas no significant differences in the profile of endothelial miRs were detected in patients treated with metformin or insulin. Taken together, our findings demonstrate for the first time that specific circulating miRs involved in the regulation of endothelial function are significantly regulated in frail HFpEF patients with DM and in response to SGLT2 inhibition. SIGNIFICANCE STATEMENT: We have identified a novel microRNA signature functionally involved in the regulation of endothelial function that is significantly regulated in frail patients with HFpEF and diabetes. Moreover, the treatment with the SGLT2 inhibitor empagliflozin caused a modification of some of these microRNAs in a direction that was opposite to what observed in HFpEF patients, indicating a rescue of endothelial function. Our findings are relevant for clinical practice inasmuch as we were able to establish novel biomarkers of disease and response to therapy.


Assuntos
Diabetes Mellitus , Insuficiência Cardíaca , Insulinas , Metformina , MicroRNAs , Doenças Vasculares , Humanos , Idoso , MicroRNAs/genética , Transportador 2 de Glucose-Sódio , Volume Sistólico , Metformina/farmacologia , Metformina/uso terapêutico , Biomarcadores , Insulinas/metabolismo , Insulinas/uso terapêutico
5.
Curr Opin Nephrol Hypertens ; 32(2): 134-140, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36683537

RESUMO

PURPOSE OF REVIEW: The current review aims to present the latest scientific updates on the role of Sortilin in the pathophysiology of hypertension. RECENT FINDINGS: The main focus of this systematic overview is on the functional contribution of Sortilin to the pathogenesis of hypertension. Sortilin is a glycoprotein mostly known for its actions as a trafficking molecule directing proteins to specific secretory or endocytic compartments of the cell. Emerging evidence indicates that Sortilin is associated with pathological conditions, including inflammation, arteriosclerosis, dyslipidemia, insulin resistance, and vascular calcification. Most recently, Sortilin has been shown to finely control endothelial function and to drive hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress. SUMMARY: The latest findings linking Sortilin and hypertension that are herein discussed can inspire novel areas of research which could eventually lead to the discovery of new therapeutic strategies in cardiovascular medicine.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Glicoproteínas , Hipertensão , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Glicoproteínas/metabolismo , Hipertensão/metabolismo , Calcificação Vascular/metabolismo
6.
Cardiovasc Diabetol ; 22(1): 89, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072850

RESUMO

L-Arginine (L-Arg), is a semi-essential amino acid involved in the formation of nitric oxide. The functional relevance of L-Arg in diabetes mellitus has been evaluated both in animal models and in human subjects. In the literature there are several lines of evidence indicating that L-Arg has beneficial effects in diabetes and numerous studies advocate its administration to attenuate glucose intolerance in diabetic patients. Here we present a comprehensive overview of the main studies exploring the effects of L-Arg in diabetes, including preclinical and clinical reports on this topic.


Assuntos
Diabetes Mellitus , Intolerância à Glucose , Animais , Humanos , Arginina/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Óxido Nítrico/metabolismo
7.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176093

RESUMO

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Humanas , Humanos , Animais , Camundongos , Células-Tronco Embrionárias Humanas/metabolismo , Blastocisto , Transdução de Sinais , Fatores de Transcrição/metabolismo , Diferenciação Celular
8.
Cardiovasc Diabetol ; 21(1): 23, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164744

RESUMO

Restenosis, defined as the re-narrowing of an arterial lumen after revascularization, represents an increasingly important issue in clinical practice. Indeed, as the number of stent placements has risen to an estimate that exceeds 3 million annually worldwide, revascularization procedures have become much more common. Several investigators have demonstrated that vessels in patients with diabetes mellitus have an increased risk restenosis. Here we present a systematic overview of the effects of diabetes on in-stent restenosis. Current classification and updated epidemiology of restenosis are discussed, alongside the main mechanisms underlying the pathophysiology of this event. Then, we summarize the clinical presentation of restenosis, emphasizing the importance of glycemic control in diabetic patients. Indeed, in diabetic patients who underwent revascularization procedures a proper glycemic control remains imperative.


Assuntos
Angioplastia Coronária com Balão , Reestenose Coronária , Diabetes Mellitus , Angioplastia Coronária com Balão/efeitos adversos , Angiografia Coronária/efeitos adversos , Reestenose Coronária/epidemiologia , Reestenose Coronária/etiologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/etiologia , Humanos , Stents/efeitos adversos , Resultado do Tratamento
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498958

RESUMO

Tirzepatide is a new molecule capable of controlling glucose blood levels by combining the dual agonism of Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) receptors. GIP and GLP1 are incretin hormones: they are released in the intestine in response to nutrient intake and stimulate pancreatic beta cell activity secreting insulin. GIP and GLP1 also have other metabolic functions. GLP1, in particular, reduces food intake and delays gastric emptying. Moreover, Tirzepatide has been shown to improve blood pressure and to reduce Low-Density Lipoprotein (LDL) cholesterol and triglycerides. Tirzepatide efficacy and safety were assessed in a phase III SURPASS 1-5 clinical trial program. Recently, the Food and Drug Administration approved Tirzepatide subcutaneous injections as monotherapy or combination therapy, with diet and physical exercise, to achieve better glycemic blood levels in patients with diabetes. Other clinical trials are currently underway to evaluate its use in other diseases. The scientific interest toward this novel, first-in-class medication is rapidly increasing. In this comprehensive and systematic review, we summarize the main results of the clinical trials investigating Tirzepatide and the currently available meta-analyses, emphasizing novel insights into its adoption in clinical practice for diabetes and its future potential applications in cardiovascular medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/uso terapêutico , Polipeptídeo Inibidor Gástrico/metabolismo , Incretinas/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
10.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142146

RESUMO

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Assuntos
Células Endoteliais/patologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , MicroRNAs , Enzima de Conversão de Angiotensina 2 , COVID-19 , Dengue , Células Endoteliais/metabolismo , Doença pelo Vírus Ebola , Humanos , Imunoglobulinas , MicroRNAs/genética , Mucinas , Neuropilina-1/genética , Peptidil Dipeptidase A , SARS-CoV-2 , Acidente Vascular Cerebral , Zika virus , Infecção por Zika virus
11.
J Pharmacol Exp Ther ; 379(2): 182-190, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389654

RESUMO

We previously demonstrated that the selective retinoic acid receptor (RAR) ß 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. We hypothesized that by decreasing oxidative stress and consequent fibrogenesis, AC261066 could attenuate the development of contractile dysfunction in post-ischemic heart failure (HF). We tested this hypothesis in vivo using an established murine model of myocardial infarction (MI), obtained by permanent occlusion of the left anterior descending coronary artery. Treating mice with AC261066 in drinking water significantly attenuated the post-MI deterioration of echocardiographic indices of cardiac function, diminished remodeling, and reduced oxidative stress, as evidenced by a decrease in malondialdehyde level and p38 mitogen-activated protein kinase expression in cardiomyocytes. The effects of AC261066 were also associated with a decrease in interstitial fibrosis, as shown by a marked reduction in collagen deposition and α-smooth muscle actin expression. In cardiac murine fibroblasts subjected to hypoxia, AC261066 reversed hypoxia-induced decreases in superoxide dismutase 2 and angiopoietin-like 4 transcriptional levels as well as the increase in NADPH oxidase 2 mRNA, demonstrating that the post-MI cardioprotective effects of AC261066 are associated with an action at the fibroblast level. Thus, AC261066 alleviates post-MI cardiac dysfunction by modulating a set of genes involved in the oxidant/antioxidant balance. These AC261066 responsive genes diminish interstitial fibrogenesis and remodeling. Since MI is a recognized major cause of HF, our data identify RARß 2 as a potential pharmacological target in the treatment of HF. SIGNIFICANCE STATEMENT: A previous report showed that the selective retinoic acid receptor (RAR) ß 2 agonist AC261066 reduces oxidative stress in an ex vivo murine model of ischemia/reperfusion. This study shows that AC261066 attenuates the development of contractile dysfunction and maladaptive remodeling in post-ischemic heart failure (HF) by modulating a set of genes involved in oxidant/antioxidant balance. Since myocardial infarction is a recognized major cause of HF, these data identify RARß 2 as a potential pharmacological target in the treatment of HF.


Assuntos
Benzoatos/uso terapêutico , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Receptores do Ácido Retinoico/agonistas , Tiazóis/uso terapêutico , Animais , Benzoatos/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Receptores do Ácido Retinoico/metabolismo , Tiazóis/farmacologia
12.
Haematologica ; 106(2): 391-403, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193252

RESUMO

Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLRs), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte-secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wild-type mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.


Assuntos
Hepcidinas , Ferro , Animais , Peptídeo C , Eritropoese , Fator de Crescimento de Fibroblastos 23 , Hepcidinas/genética , Inflamação/tratamento farmacológico , Camundongos
15.
Anal Biochem ; 552: 50-59, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28711444

RESUMO

The mitochondrial membrane potential (ΔΨm) generated by proton pumps (Complexes I, III and IV) is an essential component in the process of energy storage during oxidative phosphorylation. Together with the proton gradient (ΔpH), ΔΨm forms the transmembrane potential of hydrogen ions which is harnessed to make ATP. The levels of ΔΨm and ATP in the cell are kept relatively stable although there are limited fluctuations of both these factors that can occur reflecting normal physiological activity. However, sustained changes in both factors may be deleterious. A long-lasting drop or rise of ΔΨm vs normal levels may induce unwanted loss of cell viability and be a cause of various pathologies. Among other factors, ΔΨm plays a key role in mitochondrial homeostasis through selective elimination of dysfunctional mitochondria. It is also a driving force for transport of ions (other than H+) and proteins which are necessary for healthy mitochondrial functioning. We propose additional potential mechanisms for which ΔΨm is essential for maintenance of cellular health and viability and provide recommendations how to accurately measure ΔΨm in a cell and discuss potential sources of artifacts.


Assuntos
Potencial da Membrana Mitocondrial , Ânions/metabolismo , Cátions/metabolismo , Homeostase , Humanos , Transporte de Íons , Mitocôndrias/metabolismo
17.
Biochim Biophys Acta ; 1860(11 Pt A): 2463-2473, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27450891

RESUMO

BACKGROUND: Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. Linking a triphenyl-phosphonium cation to fluorescein through a decyl (C10) spacer yields a fluorescent uncoupler, coined mitoFluo, that selectively accumulates in energized mitochondria (Denisov et al., Chem.Commun. 2014). METHODS: Proton-transport activity of mitoFluo was tested in liposomes reconstituted with bacteriorhodopsin. To examine the uncoupling action on mitochondria, we monitored mitochondrial membrane potential in parallel with oxygen consumption. Neuro- and nephroprotecting activity was detected by a limb-placing test and a kidney ischemia/reperfusion protocol, respectively. RESULTS: We compared mitoFluo properties with those of its newly synthesized analog having a short (butyl) spacer (C4-mitoFluo). MitoFluo, but not C4-mitoFluo, caused collapse of mitochondrial membrane potential resulting in stimulation of mitochondrial respiration. The dramatic difference in the uncoupling activity of mitoFluo and C4-mitoFluo was in line with the difference in their protonophoric activity on a lipid membrane. The accumulation of mitoFluo in mitochondria was more pronounced than that of C4-mitoFluo. MitoFluo decreased the rate of ROS production in mitochondria. MitoFluo was effective in preventing consequences of brain trauma in rats: it suppressed trauma-induced brain swelling and reduced a neurological deficit. Besides, mitoFluo attenuated acute kidney injury after ischemia/reperfusion in rats. CONCLUSIONS: A long alkyl linker was proved mandatory for mitoFluo to be a mitochondria- targeted uncoupler. MitoFluo showed high protective efficacy in certain models of oxidative stress-related diseases. GENERAL SIGNIFICANCE: MitoFluo is a candidate for developing therapeutic and fluorescence imaging agents to treat brain and kidney pathologies.


Assuntos
Fluoresceína/química , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Desacopladores/farmacologia , Animais , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Oniocompostos/química , Compostos Organofosforados/química , Ratos , Desacopladores/síntese química , Desacopladores/química
18.
Heart Lung Circ ; 26(7): 648-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28190758

RESUMO

Intercellular cross-talk is a fundamental process for spreading cellular signals between neighbouring and distant cells to properly regulate their metabolism, to coordinate homeostasis, adaptation and survival as a functional tissue and organ. In this review, we take a close molecular view of the underpinning molecular mechanisms of such complex intercellular communications. There are several studied forms of cell-to-cell communications considered crucial for the maintenance of multicellular organisms. The most explored is paracrine signalling which is realised through the release of diffusible signalling factors (e.g., hormones or growth factors) from a donor cell and taken up by a recipient cell. More challenging is communication which also does not require the direct contact of cells but is organised through the release of named signalling factors embedded in membranous structures. This mode of cell-to-cell communication is executed through the transfer of extracellular vesicles. Two other types of cellular cross-communication require direct contact of communicating cells. In one type, cells are connected by gap junctions which regulate permeation of chemical signals addressed to a neighbouring cell. Another type of cell communication is organised to provide a cytosolic continuum of adjacent cells joined by different tiny cell membrane extensions coined tunnelling nanotubes. In this review, we consider the various cell communication modes in the heart, and examples of processes in non-cardiac cells which may have mechanistic parallels with cardiovascular cells.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Junções Comunicantes/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
19.
Heart Lung Circ ; 23(10): 897-904, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043581

RESUMO

Vascular pathologies pose a significant health problem because of their wide prevalence and high impact on the rate of mortality. Blockade of blood flow in major blood vessels leads to ischaemia associated with oxidative stress, where mitochondria act as a major source of reactive oxygen species (ROS). While low levels of ROS perform a necessary function in normal cellular signalling and metabolism, elevated levels under pathological conditions are detrimental both at the cell and organ level. While cellular oxygenation is necessary to maintain tissue viability, a key pathological occurrence when restoring blood flow to ischaemic tissues is the subsequent burst of ROS generation following reoxygenation, resulting in a cascade of ROS-induced ROS release. This oxygen 'paradox' is a constraint in clinical practice, that is, the need for rapid and maximal restoration of blood flow while at the same time minimising the harmful impact of reperfusion injury on damaged tissues. Mitochondria play a central role in many signalling pathways, including cardioprotection against ischaemic injury and ROS signalling, thus the main target of any anti-ischaemic protective or post-injury therapeutic strategy should include mitochondria. At present, one of the most effective strategies that provide mitochondrial tolerance to ischaemia is ischaemic preconditioning. In addition, pharmacological preconditioning which mimics intrinsic natural protective mechanisms has proven effective at priming biological mechanisms to confront ischaemic damage. This review will discuss the role of mitochondria in contributing to acute ischaemia-reperfusion (IR) injury, and mechanisms of cardioprotection in respect to mitochondrial signalling pathways.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo
20.
J Cardiovasc Aging ; 4(2)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39015481

RESUMO

Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA