Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(11): 3018-23, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929321

RESUMO

Mutations in chromatin-modifying proteins and transcription factors are commonly associated with a wide variety of cancers. Through gain- or loss-of-function, these mutations may result in characteristic alterations of accessible chromatin, indicative of shifts in the landscape of regulatory elements genome-wide. The identification of compounds that reverse a specific chromatin signature could lead to chemical probes or potential therapies. To explore whether chromatin accessibility could serve as a platform for small molecule screening, we adapted formaldehyde-assisted isolation of regulatory elements (FAIRE), a chemical method to enrich for nucleosome-depleted genomic regions, as a high-throughput, automated assay. After demonstrating the validity and robustness of this approach, we applied this method to screen an epigenetically targeted small molecule library by evaluating regions of aberrant nucleosome depletion mediated by EWSR1-FLI1, the chimeric transcription factor critical for the bone and soft tissue tumor Ewing sarcoma. As a class, histone deacetylase inhibitors were greatly overrepresented among active compounds. These compounds resulted in diminished accessibility at targeted sites by disrupting transcription of EWSR1-FLI1. Capitalizing on precise differences in chromatin accessibility for drug discovery efforts offers significant advantages because it does not depend on the a priori selection of a single molecular target and may detect novel biologically relevant pathways.


Assuntos
Cromatina/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Cromatina/ultraestrutura , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/isolamento & purificação , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Terapia de Alvo Molecular , Nucleossomos/ultraestrutura , Proteínas de Fusão Oncogênica/genética , Panobinostat , Fenilbutiratos/farmacologia , Sarcoma de Ewing/patologia , Bibliotecas de Moléculas Pequenas , Vorinostat
2.
Nat Chem Biol ; 9(3): 184-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292653

RESUMO

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Assuntos
Benzamidas/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Lisina/análogos & derivados , Sondas Moleculares/farmacologia , Piperidinas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Ligação Competitiva/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inibidores , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Piperidinas/química , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
3.
Biochemistry ; 52(29): 4929-40, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23763575

RESUMO

The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. By limiting the size of CA and increasing the size of MA (with an N-terminal GST fusion), we were able to measure significant differences in polarization values as a function of HIV-1 protease cleavage. The sensitivity of the assay was tested in the presence of increasing amounts of an HIV-1 protease inhibitor, which resulted in a gradual decrease in the fluorescence polarization values demonstrating that the assay is sensitive in discerning changes in protease processing. The high-throughput screening assay validation in 384-well plates showed that the assay is reproducible and robust with an average Z' value of 0.79 and average coefficient of variation values of <3%. The robustness and reproducibility of the assay were further validated using the LOPAC(1280) compound library, demonstrating that the assay provides a sensitive high-throughput screening platform that can be used with large compound libraries for identifying novel maturation inhibitors targeting the MA/CA site of the HIV-1 Gag polyprotein.


Assuntos
Capsídeo/metabolismo , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , Linhagem Celular , Fluoresceína/química , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Especificidade por Substrato , Montagem de Vírus , Replicação Viral
4.
J Biol Chem ; 287(8): 5301-9, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22215671

RESUMO

Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Receptor A1 de Adenosina/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/química , Agonistas do Receptor A1 de Adenosina/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Animais , Córtex Cerebral/citologia , Colforsina/farmacologia , Células HEK293 , Histidina , Humanos , Hidrólise/efeitos dos fármacos , Ligantes , Camundongos , Imagem Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor A1 de Adenosina/química , Receptor A2B de Adenosina/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única
5.
Nat Chem Biol ; 7(8): 566-74, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743462

RESUMO

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Quinazolinas/farmacologia , Animais , Linhagem Celular , Inativação Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Estrutura Molecular
6.
Bioorg Med Chem Lett ; 22(19): 6224-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22932313

RESUMO

Based on a shared structural core of diarylamine in several known anticancer drugs as well as a new cytotoxic hit 6-chloro-2-(4-cyanophenyl)amino-3-nitropyridine (7), 30 diarylamines and diarylethers were designed, synthesized, and evaluated for cytotoxic activity against A549, KB, KB-vin, and DU145 human tumor cell lines (HTCL). Four new leads 11e, 12, 13a, and 13b were discovered with GI(50) values ranging from 0.33 to 3.45µM. Preliminary SAR results revealed that a diarylamine or diarylether could serve as an active structural core, meta-chloro and ortho-nitro groups on the A-ring (either pyridine or phenyl ring) were necessary and crucial for cytotoxic activity, and the para-substituents on the other phenyl ring (B-ring) were related to inhibitory selectivity for different tumor cells. In an investigation of potential biological targets of the new leads, high thoughput kinase screening discovered that new leads 11e, 12 and 13b especially inhibit Mer tyrosine kinase, a proto-oncogene associated with munerous tumor types, with IC(50) values of 2.2-3.0µM. Therefore, these findings provide a good starting point to optimize a new class of compounds as potential anticancer agents, particularly targeting Mer tyrosine kinase.


Assuntos
Aminas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Éteres/farmacologia , Aminas/síntese química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Éteres/síntese química , Éteres/química , Humanos , Estrutura Molecular , Proto-Oncogene Mas , Relação Estrutura-Atividade
7.
Drug Discov Today Technol ; 7(1): e59-e65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21243036

RESUMO

Epigenetics refers to heritable changes that control how the genome is accessed in different cell-types and during development and differentiation. Even though each cell contains essentially the same genetic code, epigenetic mechanisms permit specialization of function between cells. The state of chromatin, the complex of histone proteins, RNA and DNA that efficiently package the genome, is largely regulated by specific modifications to histone proteins and DNA, and the recognition of these marks by other proteins and protein complexes. The enzymes that produce these modifications (the 'writers'), the proteins that recognize them (the 'readers'), and the enzymes that remove them (the 'erasers') are critical targets for manipulation in order to further understand the histone code and its role in biology and human disease.

8.
J Biomol Screen ; 14(5): 444-51, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19483148

RESUMO

The process of drug discovery has evolved considerably since the advent of high-throughput screening (HTS) in the 1980s. Experts and opinion leaders today are agreeing that the current trend in the field is a focus on increasing overall quality (target, screening, and compounds), use of multiple screening approaches for lead discovery, and more flexibility in the process. The associated need for increased flexibility and quality control to support existing HTS paradigms as well as lower throughput approaches such as fragment screening, computational chemistry, focused library building, and centralized lead optimization support has required an evolution in compound management (CM, aka sample management or library management). Although there is much less published peer-reviewed data in CM, due to its historical links to HTS, it has followed very similar trends. In recent years, the focus in CM has been increasingly in compound quality and increased flexibility of the process, as opposed to number of compounds dispensed and speed of dispensing, which were standard metrics and indicators used not so long ago. Ideally, to screen the highest quality sample for every assay, one would start with a correct identity and pure solid, make a correct concentration solution in water or water-soluble/assay-compatible solvent that would allow 100% solubilization, and screen it immediately in a biological assay. Neither CM nor screening has advanced sufficiently to deliver this ideal scenario, but many significant advancements have been made in recent years both in terms of quality of compounds in stores and flexibility of the process, which will be reviewed herein.


Assuntos
Descoberta de Drogas/métodos , Indústria Farmacêutica , Controle de Qualidade , Tecnologia Farmacêutica , Técnicas de Química Combinatória , Indústria Farmacêutica/métodos , Indústria Farmacêutica/normas , Preparações Farmacêuticas
9.
Methods Mol Biol ; 565: 225-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19551365

RESUMO

Inhibitors of kinase activities can be mechanistically diverse, genomically selective, and pathway sensitive. This potential has made these biological targets the focus of a number of drug discovery and development programs in the pharmaceutical industry. To this end, the high-throughput screening of kinase targets against diverse chemical libraries or focused compound collections is at the forefront of the drug discovery process. Thus, the platform technology used to screen such libraries must be flexible and produce reliable and comparable data. The Caliper HTS microfluidic platform provides a direct determination of a peptidic substrate and phosphorylated product through the electrophoretic separation of the two species. The resulting data are reliable and comparable among screens and cover a broad range of biological targets, provided there is a definable peptide substrate that permits separation. Here we present a method for the high-throughput screening of the cyclic AMP-dependent protein kinase (PKA) as an example of the simplicity of this microfluidic platform.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Microfluídica/métodos , Animais , Humanos , Reprodutibilidade dos Testes
10.
SLAS Technol ; 24(3): 256-268, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30865569

RESUMO

This paper has been written by the SLAS Sample Management Special Interest Group to serve as a guide to the best practices and methods in establishing and maintaining a high-quality sample management system. The topics covered are applicable to sample types ranging from small molecules to biologics to tissue samples. It has been put together using the collective experience of the authors in start-up companies, small pharma, agricultural research, IT, academia, biorepositories, and large pharma companies. Our hope is that sharing our experience will streamline the process of setting up a new sample management system and help others avoid some of the problems that we have encountered.


Assuntos
Pesquisa Biomédica/métodos , Laboratórios/organização & administração , Manejo de Espécimes/métodos
11.
Neuropharmacology ; 144: 301-311, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30399367

RESUMO

Currently, there are no established pharmaceutical strategies that effectively treat social deficits in autism spectrum disorder (ASD). Oxytocin, a neurohormone that plays a role in multiple types of social behaviors, has been proposed as a possible therapeutic against social impairment and other symptoms in ASD. However, from the standpoint of pharmacotherapy, oxytocin has several liabilities as a standard clinical treatment, including rapid metabolism, low brain penetrance, and activity at the vasopressin (antidiuretic hormone) receptors. The present studies describe findings from a preclinical screening program to evaluate oxytocin receptor (OXTR) agonists and oxytocin metabolites for potential clinical use as more optimal treatments. We first investigated two synthetic oxytocin analogs, TC-OT-39 and carbetocin, using in vitro cell-based assays for pharmacological characterization and behavioral tests in the BALB/cByJ mouse model of ASD-like social deficits. Although both TC-OT-39 and carbetocin selectively activate the OXTR, neither synthetic agonist had prosocial efficacy in the BALB/cByJ model. We next evaluated two oxytocin metabolites: OT(4-9) and OT(5-9). While OT(5-9) failed to affect social deficits, the metabolite OT(4-9) led to significant social preference in the BALB/cByJ model, in a dose-dependent manner. The increased sociability was observed at both 24 h and 12 days following the end of a subchronic regimen with OT(4-9) (2.0 mg/kg). Overall, these results suggest that the prosocial effects of oxytocin could be mediated by downstream activity of oxytocin metabolites, raising the possibility of new pathways to target for drug discovery relevant to ASD.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Ocitocina/análogos & derivados , Psicotrópicos/farmacologia , Receptores de Ocitocina/agonistas , Comportamento Social , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/psicologia , Comportamento Compulsivo/tratamento farmacológico , Comportamento Compulsivo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos Endogâmicos BALB C , Ocitocina/química , Ocitocina/metabolismo , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo
12.
Life Sci ; 82(21-22): 1050-8, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18455194

RESUMO

Target specificity and off-target liabilities are routinely monitored during the early phases of drug discovery for most kinase projects. Typically these criteria are evaluated using a profiling panel comprised of a diverse collection of in vitro kinase assays and relates compound structure to potency and selectivity. The success of these efforts has led to the design of similar panels for phosphatase, protease, and epigenetic targets. Here the implementation of an epigenetic profiling panel, comprised of eleven histone deacetylases (HDACs) and one histone acetyltransferase (HAT), was used to evaluate chemical modulators of these enzymes. HDAC inhibitors (HDACi) such as sodium butyrate and trichostatin A demonstrate diverse biological effects which have led to broad speculation about their therapeutic potential in multiple disease states. Some HDACi have demonstrated tumor suppression in vivo and recently Zolinza was the first HDACi approved by the FDA for the treatment of cutaneous T-cell lymphoma. While HDACi have demonstrated therapeutic utility, many of the first generation compounds are pan-inhibitors. Thus, use of an HDAC profiling panel will be essential in achieving isoform specificity of the next generation of inhibitors. To this end, twenty-one compounds, twelve of which are known to have activities against the HDACs, were tested to evaluate the utility of the epigenetic panel. Additionally, these compounds were tested against a larger 72 member enzyme panel comprised of kinase, phosphatase and protease activities. This effort represents the first time these compounds have been profiled with such a broad range of biochemical activities.


Assuntos
Inibidores de Histona Desacetilases , Análise por Conglomerados , Flavonoides/farmacologia , Histona Desacetilases/genética , Humanos , Isoenzimas/antagonistas & inibidores , Técnicas Analíticas Microfluídicas , Peptídeo Hidrolases/metabolismo , Fenóis/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Polifenóis , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/química , Relação Estrutura-Atividade
13.
Oncotarget ; 9(4): 4758-4772, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435139

RESUMO

Drug repurposing approaches have the potential advantage of facilitating rapid and cost-effective development of new therapies. Particularly, the repurposing of drugs with known safety profiles in children could bypass or streamline toxicity studies. We employed a phenotypic screening paradigm on a panel of well-characterized cell lines derived from pediatric solid tumors against a collection of ∼3,800 compounds spanning approved drugs and investigational agents. Specifically, we employed titration-based screening where compounds were tested at multiple concentrations for their effect on cell viability. Molecular and cellular target enrichment analysis indicated that numerous agents across different therapeutic categories and modes of action had an antiproliferative effect, notably antiparasitic/protozoal drugs with non-classic antineoplastic activity. Focusing on active compounds with dosing and safety information in children according to the Children's Pharmacy Collaborative database, we identified compounds with therapeutic potential through further validation using 3D tumor spheroid models. Moreover, we show that antiparasitic agents induce cell death via apoptosis induction. This study demonstrates that our screening platform enables the identification of chemical agents with cytotoxic activity in pediatric cancer cell lines of which many have known safety/toxicity profiles in children. These agents constitute attractive candidates for efficacy studies in pre-clinical models of pediatric solid tumors.

14.
SLAS Discov ; 23(10): 1083-1091, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29958052

RESUMO

CC-chemokine receptor 7 (CCR7) is a G protein-coupled receptor expressed on a variety of immune cells. CCR7 plays a critical role in the migration of lymphocytes into secondary lymphoid tissues. CCR7 expression, however, has been linked to numerous disease states. Due to its therapeutic relevance and absence of available CCR7 inhibitors, we undertook a high-throughput screen (HTS) to identify small-molecule antagonists of the receptor. Here, we describe a robust HTS approach using a commercially available ß-galactosidase enzyme fragment complementation system and confirmatory transwell chemotaxis assays. This work resulted in the identification of several compounds with activity against CCR7. The most potent of these was subsequently determined to be cosalane, a cholesterol derivative previously designed as a therapeutic for human immunodeficiency virus. Cosalane inhibited both human and murine CCR7 in response to both CCL19 and CCL21 agonists at physiologic concentrations. Furthermore, cosalane produced durable inhibition of the receptor following a cellular incubation period with subsequent washout. Overall, our work describes the development of an HTS-compatible assay, completion of a large HTS campaign, and demonstration for the first time that cosalane is a validated CCR7 antagonist. These efforts could pave the way for new approaches to address CCR7-associated disease processes.


Assuntos
Ácido Aurintricarboxílico/análogos & derivados , Ensaios de Triagem em Larga Escala , Receptores CCR7/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Ácido Aurintricarboxílico/química , Ácido Aurintricarboxílico/farmacologia , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Desenho de Fármacos , Humanos , Ligantes , Camundongos , Estrutura Molecular , Receptores CCR7/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
15.
PLoS One ; 13(5): e0197082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29742153

RESUMO

WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence. This peptide exhibits micromolar affinity towards WHSC1 in biochemical and biophysical assays. Furthermore, a crystal structure was solved with the peptide in complex with SAM and the SET domain of WHSC1L1. This inhibitor is an important first step in creating potent, selective WHSC1 tool compounds for the purposes of understanding the complex biology in relation to human disease.


Assuntos
Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Peptídeos/química , Proteínas Repressoras/antagonistas & inibidores , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Humanos , Lisina/química , Neoplasias/enzimologia , Norleucina/análogos & derivados , Norleucina/química , Norleucina/farmacologia , Domínios PR-SET/genética , Peptídeos/genética , Conformação Proteica/efeitos dos fármacos , Proteínas Repressoras/química , Proteínas Repressoras/genética
16.
PLoS One ; 13(6): e0197372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856759

RESUMO

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinogênese/genética , Histona-Lisina N-Metiltransferase/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia
17.
J Biomol Screen ; 12(7): 972-82, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17942790

RESUMO

Sequence-based phylogenies (SBP) are well-established tools for describing relationships between proteins. They have been used extensively to predict the behavior and sensitivity toward inhibitors of enzymes within a family. The utility of this approach diminishes when comparing proteins with little sequence homology. Even within an enzyme family, SBPs must be complemented by an orthogonal method that is independent of sequence to better predict enzymatic behavior. A chemogenomic approach is demonstrated here that uses the inhibition profile of a 130,000 diverse molecule library to uncover relationships within a set of enzymes. The profile is used to construct a semimetric additive distance matrix. This matrix, in turn, defines a sequence-independent phylogeny (SIP). The method was applied to 97 enzymes (kinases, proteases, and phosphatases). SIP does not use structural information from the molecules used for establishing the profile, thus providing a more heuristic method than the current approaches, which require knowledge of the specific inhibitor's structure. Within enzyme families, SIP shows a good overall correlation with SBP. More interestingly, SIP uncovers distances within families that are not recognizable by sequence-based methods. In addition, SIP allows the determination of distance between enzymes with no sequence homology, thus uncovering novel relationships not predicted by SBP. This chemogenomic approach, used in conjunction with SBP, should prove to be a powerful tool for choosing target combinations for drug discovery programs as well as for guiding the selection of profiling and liability targets.


Assuntos
Enzimas/química , Enzimas/genética , Genômica , Proteoma , Inibidores Enzimáticos/farmacologia , Humanos , Filogenia
18.
ACS Chem Biol ; 12(8): 1999-2007, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28703575

RESUMO

The pharmacological effectiveness of oligonucleotides has been hampered by their tendency to remain entrapped in endosomes, thus limiting their access to cytosolic or nuclear targets. We have previously reported a group of small molecules that enhance the effects of oligonucleotides by causing their release from endosomes. Here, we describe a second novel family of oligonucleotide enhancing compounds (OECs) that is chemically distinct from the compounds reported previously. We demonstrate that these molecules substantially augment the actions of splice switching oligonucleotides (SSOs) and antisense oligonucleotides (ASOs) in cell culture. We also find enhancement of SSO effects in a murine model. These new compounds act by increasing endosome permeability and causing partial release of entrapped oligonucleotides. While they also affect the permeability of lysosomes, they are clearly different from typical lysosomotropic agents. Current members of this compound family display a relatively narrow window between effective dose and toxic dose. Thus, further improvements are necessary before these agents can become suitable for therapeutic use.


Assuntos
Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Microscopia Confocal , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , Splicing de RNA
19.
Nat Rev Drug Discov ; 15(1): 1-2, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26585534

RESUMO

Technological advances coupled with novel collaborative strategies for compound sourcing and management are poised to transform the utility of high-throughput screening.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Indústria Farmacêutica/métodos , Parcerias Público-Privadas
20.
ACS Infect Dis ; 2(3): 194-206, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27379343

RESUMO

The protozoan parasite Toxoplasma gondii secretes a family of serine-threonine protein kinases into its host cell in order to disrupt signaling and alter immune responses. One prominent secretory effector is the rhoptry protein 18 (ROP18), a serine-threonine kinase that phosphorylates immunity related GTPases (IRGs) and hence blocks interferon gamma-mediated responses in rodent cells. Previous genetic studies show that ROP18 is a major virulence component of T. gondii strains from North and South America. Here, we implemented a high throughput screen to identify small molecule inhibitors of ROP18 in vitro and subsequently validated their specificity within infected cells. Although ROP18 was not susceptible to many kinase-directed inhibitors that affect mammalian kinases, the screen identified several sub micromolar inhibitors that belong to three chemical scaffolds: oxindoles, 6-azaquinazolines, and pyrazolopyridines. Treatment of interferon gamma-activated cells with one of these inhibitors enhanced immunity related GTPase recruitment to wild type parasites, recapitulating the defect of Δrop18 mutant parasites, consistent with targeting ROP18 within infected cells. These compounds provide useful starting points for chemical biology experiments or as leads for therapeutic interventions designed to reduce parasite virulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA