RESUMO
Resting cytosolic Ca2+ concentration is tightly regulated to fine-tune Ca2+-dependent cellular functions. Luminal breast cancer cells exhibit constitutive Ca2+ entry mediated by Orai1 and the secretory pathway Ca2+-ATPase, SPCA2, which result in mammary microcalcifications that constitute a prognostic marker of mammary lesions. Two Orai1 isoforms have been identified, the full-length Orai1α, consisting of 301 amino acids, and the short variant, Orai1ß, lacking the 63 or 70 N-terminal amino acids comprising residues involved in channel inactivation and binding sites with Orai1 partners. We show that only the mammalian-specific Orai1α rescues SPCA2-dependent constitutive Ca2+ entry in Orai1-KO MCF7 cells, a widely used luminal breast cancer cell line. FRET analysis and immunoprecipitation revealed that Orai1α shows a greater ability to interact with SPCA2 than Orai1ß. Deletion of the first 38 amino acids in Orai1α reduced the interaction with SPCA2 to a similar extent as Orai1ß, thus suggesting that the N-terminal 38 amino acids play a relevant role in Orai1α-SPCA2 interaction. Finally, Orai1α, but not Orai1ß, rescue the ability of Orai1-deficient cells to form in vitro microcalcifications. These findings provide compelling evidence for a functional role of Orai1α in constitutive Ca2+ entry in MCF7 cells, which might be a target to prevent the development of mammary microcalcifications in luminal breast cancer.
Assuntos
Neoplasias da Mama , Calcinose , Cálcio , Proteína ORAI1 , Humanos , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Cálcio/metabolismo , Células MCF-7 , Calcinose/metabolismo , Calcinose/genética , Calcinose/patologia , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , ATPases Transportadoras de CálcioRESUMO
Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1ß, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1ß lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1ß is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCß activation. Our results indicate that Orai1α interacts with PKCß2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.
Assuntos
Canais de Cálcio , NF-kappa B , Proteína ORAI1 , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , NF-kappa B/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Transdução de SinaisRESUMO
Store-operated Ca2+ entry is a mechanism controlled by the filling state of the intracellular Ca2+ stores, predominantly the endoplasmic reticulum (ER), where ER-resident proteins STIM1 and STIM2 orchestrate the activation of Orai channels in the plasma membrane, and Orai1 playing a predominant role. Two forms of Orai1, Orai1α and Orai1ß, have been identified, which arises the question whether they are equally regulated by STIM proteins. We demonstrate that STIM1 preferentially activates Orai1α over STIM2, yet both STIM proteins similarly activate Orai1ß. Under resting conditions, there is a pronounced association between STIM2 and Orai1α. STIM1 and STIM2 are also shown to influence the protein levels of the Orai1 variants, independently of Ca2+ influx, via lysosomal degradation. Interestingly, Orai1α and Orai1ß appear to selectively regulate the protein level of STIM1, but not STIM2. These observations offer crucial insights into the regulatory dynamics between STIM proteins and Orai1 variants, enhancing our understanding of the intricate processes that fine-tune intracellular Ca2+ signaling.
RESUMO
Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.
Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Fatores de Transcrição , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismoRESUMO
Orai1 is the pore-forming subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1ß, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca2+ concentration, as demonstrated by cell loading with the fast intracellular Ca2+ chelator dimethyl BAPTA in the absence of extracellular Ca2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1ß to the plasma membrane when expressed individually; by contrast, when Orai1ß is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1ß in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca2+ store depletion.
Assuntos
Canais de Cálcio , Canais de Cálcio Ativados pela Liberação de Cálcio , Proteína ORAI1 , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Humanos , Células HEK293RESUMO
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Assuntos
Adenilil Ciclases , Sinalização do Cálcio , Adenilil Ciclases/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , HomeostaseRESUMO
The identification of two variants of the canonical pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel Orai1, Orai1α and Orai1ß, in mammalian cells arises the question whether they exhibit different functional characteristics. Orai1α and Orai1ß differ in the N-terminal 63 amino acids, exclusive of Orai1α, and show different sensitivities to Ca2+-dependent inactivation, as well as distinct ability to form arachidonate-regulated channels. We have evaluated the role of both Orai1 variants in the activation of TRPC1 in HeLa cells. We found that Orai1α and Orai1ß are required for the maintenance of regenerative Ca2+ oscillations, while TRPC1 plays a role in agonist-induced Ca2+ influx but is not essential for Ca2+ oscillations. Using APEX2 proximity labeling, co-immunoprecipitation and the fluorescence of G-GECO1.2 fused to Orai1α our results indicate that agonist stimulation and Ca2+ store depletion enhance Orai1α-TRPC1 interaction. Orai1α is essential for TRPC1 plasma membrane location and activation. Thus, TRPC1 function in HeLa cells depends on Ca2+ influx through Orai1α exclusively.
Assuntos
Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo , Cátions , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica , Molécula 1 de Interação Estromal/metabolismoRESUMO
Melatonin has been reported to induce effective reduction in growth and development in a variety of tumors, including breast cancer. In triple-negative breast cancer (TNBC) cells, melatonin attenuates a variety of cancer features, such as tumor growth and apoptosis resistance, through a number of still poorly characterized mechanisms. One biological process that is important for TNBC cells is store-operated Ca2+ entry (SOCE), which is modulated by TRPC6 expression and function. We wondered whether melatonin might intersect with this pathway as part of its anticancer activity. We show that melatonin, in the nanomolar range, significantly attenuates TNBC MDA-MB-231 cell viability, proliferation, and migration in a time- and concentration-dependent manner, without having any effect on nontumoral breast epithelial MCF10A cells. Pretreatment with different concentrations of melatonin significantly reduced SOCE in MDA-MB-231 cells without altering Ca2+ release from the intracellular stores. By contrast, SOCE in MCF10A cells was unaffected by melatonin. In the TNBC MDA-MB-468 cell line, melatonin not only attenuated viability, migration, and SOCE, but also reduced TRPC6 expression in a time- and concentration-dependent manner, without altering expression or function of the Ca2+ channel Orai1. The expression of exogenous TRPC6 overcame the effect of melatonin on SOCE and cell proliferation, and silencing or inhibition of TRPC6 impaired the inhibitory effect of melatonin on SOCE. These findings indicate that TRPC6 downregulation might be involved in melatonin's inhibitory effects on Ca2+ influx and the maintenance of cancer hallmarks and point toward a novel antitumoral mechanism of melatonin in TNBC cells.
Assuntos
Antioxidantes/farmacologia , Canais de Cálcio/metabolismo , Melatonina/farmacologia , Canal de Cátion TRPC6/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Canal de Cátion TRPC6/metabolismo , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Orai1, the first identified member of the Orai protein family, is ubiquitously expressed in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store depletion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+ release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC) current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secretory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3). Furthermore, Orai1 possesses two variants, Orai1α and Orai1ß, the latter lacking 63 amino acids in the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each variant. Here, we review the current knowledge about the differences between Orai1α and Orai1ß, the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory effect within the cell.
Assuntos
Canais de Cálcio , Cálcio , Animais , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Transporte de Íons , Sinalização do CálcioRESUMO
Stromal interaction molecule 1 (STIM1) is one of the key elements for the activation of store-operated Ca2+ entry (SOCE). Hence, identification of the relevant phosphorylatable STIM1 residues with a possible role in the regulation of STIM1 function and SOCE is of interest. By performing a computational analysis, we identified that the Y316 residue is susceptible to phosphorylation. Expression of the STIM1-Y316F mutant in HEK293, NG115-401L and MEG-01 cells resulted in a reduction in STIM1 tyrosine phosphorylation, SOCE and the Ca2+ release-activated Ca2+ current (ICRAC). STIM1-Orai1 colocalization was reduced in HEK293 cells transfected with YFP-STIM1-Y316F compared to in cells with wild-type (WT) YFP-tagged STIM1. Additionally, the Y316F mutation altered the pattern of interaction between STIM1 and SARAF under resting conditions and upon Ca2+ store depletion. Expression of the STIM1 Y316F mutant enhanced slow Ca2+-dependent inactivation (SCDI) as compared to STIM1 WT, an effect that was abolished by SARAF knockdown. Finally, in NG115-401L cells transfected with shRNA targeting SARAF, expression of STIM1 Y316F induced greater SOCE than STIM1 WT. Taken together, our results provide evidence supporting the idea that phosphorylation of STIM1 at Y316 plays a relevant functional role in the activation and modulation of SOCE.
Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células HEK293 , Humanos , Proteína ORAI1/metabolismo , Fosforilação , Tirosina/metabolismoRESUMO
TRPC6 forms non-selective cation channels activated by a variety of stimuli that are involved in a wide number of cellular functions. In estrogen receptor-positive (ER+) breast cancer cells, the store-operated Ca2+ entry has been reported to be dependent on STIM1, STIM2 and Orai3, with TRPC6 playing a key role in the activation of store-operated Ca2+ entry as well as in proliferation, migration and viability of breast cancer cells. We have used a combination of biotinylation, Ca2+ imaging as well as protein knockdown and overexpression of a dominant-negative TRPC6 mutant (TRPC6dn) to show that TRPC6 and STIM2 are required for the maintenance of cytosolic and endoplasmic reticulum Ca2+ content under resting conditions in ER+ breast cancer MCF7 cells. These cells exhibit a greater plasma membrane expression of TRPC6 under resting conditions than non-tumoral breast epithelial cells. Attenuation of STIM2, TRPC6 and Orai3, alone or in combination, results in impairment of resting cytosolic and endoplasmic reticulum Ca2+ homeostasis. Similar results were observed when cells were transfected with expression plasmid for TRPC6dn. TRPC6 co-immunoprecipitates with STIM2 in resting MCF7 cells, a process that is impaired by rises in cytosolic Ca2+ concentration. Impairment of TRPC6 function leads to abnormal Ca2+ homeostasis and endoplasmic reticulum stress, thus, suggesting that TRPC6 might be a potential target for the development of anti-tumoral therapies.
Assuntos
Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Estrogênio/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Canal de Cátion TRPC6/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Receptores de Estrogênio/genética , Molécula 2 de Interação Estromal/genética , Canal de Cátion TRPC6/genéticaRESUMO
The mammalian exclusive Orai3 channel participates in the generation and/or modulation of two independent Ca2+ currents, the store-operated current, Icrac, involving functional interactions between the stromal interaction molecules (STIM), STIM1/STIM2, and Orai1/Orai2/Orai3, as well as the store-independent arachidonic acid (AA) (or leukotriene C4)-regulated current Iarc, which involves Orai1, Orai3 and STIM1. Overexpression of functional Orai3 has been described in different neoplastic cells and cancer tissue samples as compared to non-tumor cells or normal adjacent tissue. In these cells, Orai3 exhibits a cell-specific relevance in Ca2+ influx. In estrogen receptor-positive breast cancer cells and non-small cell lung cancer (NSCLC) cells store-operated Ca2+ entry (SOCE) is strongly dependent on Orai3 expression while in colorectal cancer and pancreatic adenocarcinoma cells Orai3 predominantly modulates SOCE. On the other hand, in prostate cancer cells Orai3 expression has been associated with the formation of Orai1/Orai3 heteromeric channels regulated by AA and reduction in SOCE, thus leading to enhanced proliferation. Orai3 overexpression is associated with supporting several cancer hallmarks, including cell cycle progression, proliferation, migration, and apoptosis resistance. This review summarizes the current knowledge concerning the functional role of Orai3 in the pathogenesis of cancer.
Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Neoplasias/patologia , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Canais de Cálcio/genética , Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , HumanosRESUMO
Polypropylene (PP) mesh is well-known as a gold standard of all prosthetic materials of choice for the reinforcement of soft tissues in case of hernia, organ prolapse, and urinary incontinence. The adverse effects that follow surgical mesh implantation remain an unmet medical challenge. Herein, it is outlined a new approach to allow viability and adhesion of human menstrual blood-derived mesenchymal stromal cells (MenSCs) on PP surgical meshes. A multilayered fibrin coating, based on fibrinogen and thrombin from a commercial fibrin sealant, was optimized to guarantee a homogeneous and stratified film on PP mesh. MenSCs were seeded on the optimized fibrin-coated meshes and their adhesion, viability, phenotype, gene expression, and immunomodulatory capacity were fully evaluated. This coating guaranteed MenSC viability, adhesion and did not trigger any change in their stemness and inflammatory profile. Additionally, MenSCs seeded on fibrin-coated meshes significantly decreased CD4+ and CD8+ T cell proliferation, compared to in vitro stimulated lymphocytes (p < 0.0001). Hence, the proposed fibrin coating for PP surgical meshes may allow the local administration of stromal cells and the reduction of the exacerbated inflammatory response following mesh implantation surgery. Reproducible and easy to adapt to other cell types, this method undoubtedly requires a multidisciplinary and translational approach to be improved for future clinical uses.
Assuntos
Separação Celular/métodos , Menstruação/sangue , Células-Tronco Mesenquimais/citologia , Adulto , Adesão Celular/fisiologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Fibrina/metabolismo , Adesivo Tecidual de Fibrina/farmacologia , Humanos , Teste de Materiais , Polipropilenos/sangue , Polipropilenos/química , Próteses e Implantes , Telas Cirúrgicas , Aderências Teciduais/patologiaRESUMO
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism for Ca2+ influx in mammalian cells with important physiological implications. Since the discovery of SOCE more than three decades ago, the mechanism that communicates the information about the amount of Ca2+ accumulated in the intracellular Ca2+ stores to the plasma membrane channels and the nature of these channels have been matters of intense investigation and debate. The stromal interaction molecule-1 (STIM1) has been identified as the Ca2+ sensor of the intracellular Ca2+ compartments that activates the store-operated channels. STIM1 regulates two types of store-dependent channels: the Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 subunits, that conduct the highly Ca2+ selective current I CRAC and the cation permeable store-operated Ca2+ (SOC) channels, which consist of Orai1 and TRPC1 proteins and conduct the non-selective current I SOC. While the crystal structure of Drosophila CRAC channel has already been solved, the architecture of the SOC channels still remains unclear. The dynamic interaction of STIM1 with the store-operated channels is modulated by a number of proteins that either support the formation of the functional STIM1-channel complex or protect the cell against Ca2+ overload.
Assuntos
Canais de Cálcio , Cálcio , Transporte de Íons , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Transporte de Íons/genética , Molécula 1 de Interação Estromal/metabolismoRESUMO
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.
Assuntos
Sinalização do Cálcio/genética , Cálcio/metabolismo , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Canais de Cálcio/genética , Membrana Celular/genética , Humanos , Proteínas Sensoras de Cálcio Intracelular , Mitocôndrias/genética , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Canais de Cátion TRPC/genéticaRESUMO
OBJECTIVE: Here, we provide evidence for the role of FLNA (filamin A) in the modulation of store-operated calcium entry (SOCE). APPROACH AND RESULTS: SOCE is a major mechanism for calcium influx controlled by the intracellular Ca2+ stores. On store depletion, the endoplasmic reticulum calcium sensor STIM1 (stromal interaction molecule 1) redistributes into puncta at endoplasmic reticulum/plasma membrane junctions, a process supported by the cytoskeleton, where it interacts with the calcium channels; however, the mechanism for fine-tuning SOCE is not completely understood. Our results demonstrate that STIM1 interacts with FLNA on calcium store depletion in human platelets. The interaction is dependent on the phosphorylation of FLNA at Ser2152 by the cAMP-dependent protein kinase. Impairment of FLNA phosphorylation and knockdown of FLNA expression using siRNA increased SOCE in platelets. Similarly, SOCE was significantly greater in FLNA-deficient melanoma M2 cells than in the FLNA-expressing M2 subclone A7. Expression of FLNA in M2 cells attenuated SOCE, an effect prevented when the cells were transfected with the nonphosphorylatable FLNA S2152A mutant. Transfection of M2 cells with the STIM1(K684,685E) mutant reduced the STIM1-FLNA interaction. In platelets, attenuation of FLNA expression using siRNA resulted in enhanced association of STIM1 with the cytoskeleton, greater STIM1-Orai1 interaction, and SOCE. Introduction of an anti-FLNA (2597-2647) antibody attenuated the STIM1-FLNA interaction and enhanced thrombin-induced platelet aggregation. CONCLUSIONS: Our results indicate that FLNA modulates SOCE and then the correct platelet function, by fine-tuning the distribution of STIM1 in the cytoskeleton and the interaction with Orai1 channels.
Assuntos
Plaquetas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Filaminas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Filaminas/genética , Humanos , Ativação do Canal Iônico , Melanoma/genética , Melanoma/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Fosforilação , Agregação Plaquetária , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Serina , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Molécula 1 de Interação Estromal/genéticaRESUMO
Stanniocalcins are expressed in the pancreas tissue, and it was suggested a direct correlation between circulating insulin and STC2 concentrations in human. Here, we show a significant correlation between STC1 and both glycaemia and glycosylated haemoglobin among DM2 patients, while DM2 patients who present the greatest glycosylated haemoglobin values exhibited the lowest STC2 expression. However, treatment of patients with antiglycaemic drugs does not significantly modify the expression of both STCs. On the other hand, STC2-/- mice that exhibited neonatal and adult overweight further presented deregulated glycaemia when they were feed with a hypercaloric diet (breeding pellet, BP). This alteration is more evident at the early stages of the animal life. Deregulated glycaemia in these mice was confirmed using glucose oral test. In addition, STC2-/- mice present enhanced pancreas size; thus, the histological analysis reveals that WT mice respond to BP diet by increasing the size of the pancreatic islets through inducing cell division, and STC2-/- mice lack this compensatory mechanism. Contrary, BP fed STC2-/- mice show enhanced number of islets but of similar size than those fed with regular pellet. Histopathological analysis demonstrates tissue structure disruption and erythrocytes infiltrations in STC2-/- mice, possibly due to the stress evoked by the BP diet. Finally, enhanced glucagon immunostaining was observed in the islet of STC2-/- mice, and the glucagon ELISA assay confirmed the increase in the circulating glucagon. Summarizing, we present evidence of the role of STCs, mainly STC2, as a possible early marker during development of diabetes mellitus.
Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adulto , Idoso , Animais , Glucagon/sangue , Glicoproteínas/deficiência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Tamanho do Órgão , Pâncreas/metabolismo , Pâncreas/patologiaRESUMO
BACKGROUND/AIMS: STIM1 and Orai1 are the key components of store-operated Ca2+ entry (SOCE). Among the proteins involved in the regulation of SOCE, SARAF prevents spontaneous activation of SOCE and modulates STIM1 function. METHODS: Cytosolic Ca2+ mobilization was estimated in fura-2-loaded cells using an epifluorescence inverted microscope. STIM1 interaction with Orai1, EFHB (EF-hand domain family member B, also known as CFAP21) and SARAF was detected by immunoprecipitation followed by Western blotting using specific antibodies. The involvement of EFHB in the translocation of NFAT to the nucleus was detected by confocal microscopy. RESULTS: Here, we report the identification of EFHB as a new SOCE regulator. EFHB interacts with STIM1 upon store depletion and dissociates through a Ca2+-dependent mechanism. RNAi-mediated silencing as well as overexpression studies revealed that EFHB plays a relevant role in the interaction of STIM1 and Orai1 upon store depletion, the activation of SOCE and NFAT translocation from the cytosol to the nucleus. Silencing EFHB expression abolished the dissociation of SARAF from STIM1, which indicates that EFHB might play an important role in the dynamic interaction between both proteins, which is relevant for the activation of Orai1 channels upon Ca2+ store depletion and their subsequent modulation via slow Ca2+-dependent inactivation. CONCLUSION: Our results indicate that EFHB is a new SOCE regulator that modulates STIM1-SARAF interaction.
Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Mapas de Interação de Proteínas , Molécula 1 de Interação Estromal/metabolismo , Citosol/metabolismo , Motivos EF Hand , Células HEK293 , Células HeLa , HumanosRESUMO
Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.
Assuntos
Adipocinas/metabolismo , Plaquetas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adesividade Plaquetária , Transdução de Sinais , Adipocinas/genética , Adipocinas/farmacologia , Animais , Apelina , Receptores de Apelina , Hemorragia/induzido quimicamente , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Trombina/genética , Trombina/metabolismo , Trombose/genética , Trombose/metabolismo , Trombose/prevenção & controle , Tromboxano A2/genética , Tromboxano A2/metabolismoRESUMO
Breast cancer is the most common type of cancer in women. It is a heterogeneous disease that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role of the molecular components of SOCE. This review focuses on the functional role and remodeling of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific therapeutic strategies.