Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Ecol Lett ; 26 Suppl 1: S11-S15, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36731905

RESUMO

Despite decades of research on the interactions between ecology and evolution, opportunities still remain to further integrate the two disciplines, especially when considering multispecies systems. Here, we discuss two such opportunities. First, the traditional emphasis on the distinction between evolutionary and ecological processes should be further relaxed as it is particularly unhelpful in the study of microbial communities, where the very notion of species is hard to define. Second, key processes of evolutionary theory such as adaptation should be exported to hierarchical levels higher than populations to make sense of biodiversity dynamics. Together, we argue that broadening our perspective of eco-evolutionary dynamics to be more inclusive of all biodiversity, both phylogenetically and hierarchically, will open up fertile new research directions and help us to address one of the major scientific challenges of our time, that is, to understand and predict changes in biodiversity in the face of rapid environmental change.

2.
Ecol Lett ; 26 Suppl 1: S140-S151, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37303299

RESUMO

How the complexity of food webs depends on environmental variables is a long-standing ecological question. It is unclear though how food-chain length should vary with adaptive evolution of the constitutive species. Here we model the evolution of species colonisation rates and its consequences on occupancies and food-chain length in metacommunities. When colonisation rates can evolve, longer food-chains can persist. Extinction, perturbation and habitat loss all affect evolutionarily stable colonisation rates, but the strength of the competition-colonisation trade-off has a major role: weaker trade-offs yield longer chains. Although such eco-evo dynamics partly alleviates the spatial constraint on food-chain length, it is no magic bullet: the highest, most vulnerable, trophic levels are also those that least benefit from evolution. We provide qualitative predictions regarding how trait evolution affects the response of communities to disturbance and habitat loss. This highlights the importance of eco-evolutionary dynamics at metacommunity level in determining food-chain length.

3.
Ecol Lett ; 26 Suppl 1: S91-S108, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840024

RESUMO

Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.


Assuntos
Evolução Biológica , Ecossistema , Mutação
4.
Mol Phylogenet Evol ; 157: 107035, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285288

RESUMO

Cryptic species can present a significant challenge to the application of systematic and biogeographic principles, especially if they are invasive or transmit parasites or pathogens. Detecting cryptic species requires a pluralistic approach in which molecular markers facilitate the detection of coherent taxonomic units that can then be analyzed using various traits (e.g., internal morphology) and crosses. In asexual or self-fertilizing species, the latter criteria are of limited use. We studied a group of cryptic freshwater snails (genus Galba) from the family Lymnaeidae that have invaded almost all continents, reproducing mainly by self-fertilization and transmitting liver flukes to humans and livestock. We aim to clarify the systematics, distribution, and phylogeny of these species with an integrative approach that includes morphology, molecular markers, wide-scale sampling across America, and data retrieved from GenBank (to include Old World samples). Our phylogenetic analysis suggests that the genus Galba originated ca. 22 Myr ago and today comprises six species or species complexes. Four of them show an elongated-shell cryptic phenotype and exhibit wide variation in their genetic diversity, geographic distribution, and invasiveness. The remaining two species have more geographically restricted distributions and exhibit a globose-shell cryptic phenotype, most likely phylogenetically derived from the elongated one. We emphasize that no Galba species should be identified without molecular markers. We also discuss several hypotheses that can explain the origin of cryptic species in Galba, such as convergence and morphological stasis.


Assuntos
Água Doce , Geografia , Caramujos/classificação , Animais , Calibragem , Repetições de Microssatélites/genética , Fenótipo , Filogenia , Caramujos/genética , Especificidade da Espécie , Fatores de Tempo
5.
Ecol Lett ; 23(8): 1263-1275, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476239

RESUMO

Evidence is growing that evolutionary dynamics can impact biodiversity-ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine-tuning, and co-adapted communities, where traits have co-evolved, in terms of emerging biodiversity-productivity, biodiversity-stability and biodiversity-invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity-productivity relationships were generally less positive among co-adapted communities, with reduced contribution of sampling effects. The effect of community-adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co-adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short-term experiments and observations following recent changes may not be safely extrapolated into the future, once eco-evolutionary feedbacks have taken place.


Assuntos
Biodiversidade , Ecossistema , Aclimatação , Evolução Biológica , Fenótipo
6.
Genetica ; 147(1): 33-45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30498954

RESUMO

Combining the analysis of spatial and temporal variation when investigating population structure enhances our capacity for unravelling the biotic and abiotic factors responsible for microevolutionary change. This work aimed at measuring the spatial and temporal genetic structure of populations of the freshwater snail Biomphalaria pfeifferi (the intermediate host of the trematode Schistosoma mansoni) in relation to the mating system (self-fertilization), demography, parasite prevalence and some ecological parameters. Snail populations were sampled four times in seven human-water contact sites in the Man region, western Côte d'Ivoire, and their variability was measured at five microsatellite loci. Limited genetic diversity and high selfing rates were observed in the populations studied. We failed to reveal an effect of demographic and ecological parameters on within-population diversity, perhaps as a result of a too small number of populations. A strong spatial genetic differentiation was detected among populations. The temporal differentiation within populations was high in most populations, though lower than the spatial differentiation. All estimates of effective population size were lower than seven suggesting a strong effect of genetic drift. However, the genetic drift was compensated by high gene flow. The genetic structure within and among populations reflected that observed in other selfing snail species, relying on high selfing rates, low effective population sizes, environmental stochasticity and high gene flow.


Assuntos
Especiação Genética , Polimorfismo Genético , Caramujos/genética , Animais , Ecossistema , Água Doce , Fluxo Gênico , Deriva Genética
7.
8.
Am Nat ; 190(5): 694-706, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29053358

RESUMO

Biological invasions offer interesting situations for observing how novel interactions between closely related, formerly allopatric species may trigger phenotypic evolution in situ. Assuming that successful invaders are usually filtered to be competitively dominant, invasive and native species may follow different trajectories. Natives may evolve traits that minimize the negative impact of competition, while trait shifts in invasives should mostly reflect expansion dynamics, through selection for colonization ability and transiently enhanced mutation load at the colonization front. These ideas were tested through a large-scale common-garden experiment measuring life-history traits in two closely related snail species, one invasive and one native, co-occurring in a network of freshwater ponds in Guadeloupe. We looked for evidence of recent evolution by comparing uninvaded or recently invaded sites with long-invaded ones. The native species adopted a life history favoring rapid population growth (i.e., increased fecundity, earlier reproduction, and increased juvenile survival) that may increase its prospects of coexistence with the more competitive invader. We discuss why these effects are more likely to result from genetic change than from maternal effects. The invader exhibited slightly decreased overall performances in recently colonized sites, consistent with a moderate expansion load resulting from local founder effects. Our study highlights a rare example of rapid life-history evolution following invasion.


Assuntos
Evolução Biológica , Espécies Introduzidas , Características de História de Vida , Caramujos/fisiologia , Animais , Guadalupe , Lagoas , Crescimento Demográfico , Caramujos/genética
9.
Naturwissenschaften ; 104(11-12): 103, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29143134

RESUMO

Bottleneck episodes may occur in small and isolated animal populations, which may result in decreased genetic diversity and increased inbreeding, but also in mating strategy adjustment. This was evaluated in the vulnerable and socially monogamous Monteiro's Storm-petrel Hydrobates monteiroi, a seabird endemic to the Azores archipelago which has suffered a dramatic population decline since the XVth century. To do this, we conducted a genetic study (18 microsatellite markers) in the population from Praia islet, which has been monitored over 16 years. We found no evidence that a genetic bottleneck was associated with this demographic decline. Monteiro's Storm-petrels paired randomly with respect to genetic relatedness and body measurements. Pair fecundity was unrelated to genetic relatedness between partners. We detected only two cases of extra-pair parentage associated with an extra-pair copulation (out of 71 offspring). Unsuccessful pairs were most likely to divorce the next year, but genetic relatedness between pair mates and pair breeding experience did not influence divorce. Divorce enabled individuals to improve their reproductive performances after re-mating only when the new partner was experienced. Re-pairing with an experienced partner occurred more frequently when divorcees changed nest than when they retained their nest. This study shows that even in strongly reduced populations, genetic diversity can be maintained, inbreeding does not necessarily occur, and random pairing is not risky in terms of pair lifetime reproductive success. Given, however, that we found no clear phenotypic mate choice criteria, the part played by non-morphological traits should be assessed more accurately in order to better understand seabird mating strategies.


Assuntos
Aves/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Açores , Aves/genética , Feminino , Variação Genética , Masculino , Repetições de Microssatélites/genética , Densidade Demográfica
10.
Mol Biol Evol ; 32(9): 2403-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980005

RESUMO

Because mating systems affect population genetics and ecology, they are expected to impact the molecular evolution of species. Self-fertilizing species experience reduced effective population size, recombination rates, and heterozygosity, which in turn should decrease the efficacy of natural selection, both adaptive and purifying, and the strength of meiotic drive processes such as GC-biased gene conversion. The empirical evidence is only partly congruent with these predictions, depending on the analyzed species, some, but not all, of the expected effects have been observed. One possible reason is that self-fertilization is an evolutionary dead-end, so that most current selfers recently evolved self-fertilization, and their genome has not yet been strongly impacted by selfing. Here, we investigate the molecular evolution of two groups of freshwater snails in which mating systems have likely been stable for several millions of years. Analyzing coding sequence polymorphism, divergence, and expression levels, we report a strongly reduced genetic diversity, decreased efficacy of purifying selection, slower rate of adaptive evolution, and weakened codon usage bias/GC-biased gene conversion in the selfer Galba compared with the outcrosser Physa, in full agreement with theoretical expectations. Our results demonstrate that self-fertilization, when effective in the long run, is a major driver of population genomic and molecular evolutionary processes. Despite the genomic effects of selfing, Galba truncatula seems to escape the demographic consequences of the genetic load. We suggest that the particular ecology of the species may buffer the negative consequences of selfing, shedding new light on the dead-end hypothesis.


Assuntos
Evolução Molecular , Caramujos/genética , Animais , Códon , Feminino , Deriva Genética , Variação Genética , Masculino , Filogenia , Polimorfismo Genético , Reprodução/genética , Seleção Genética , Autofertilização/genética
11.
Proc Biol Sci ; 283(1829)2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122564

RESUMO

Difference in dispersal ability is a key driver of species coexistence in metacommunities. However, the available frameworks for interpreting species diversity patterns in natura often overlook trade-offs and evolutionary constraints associated with dispersal. Here, we build a metacommunity model accounting for dispersal evolution and a competition-dispersal trade-off. Depending on the distribution of carrying capacities among communities, species dispersal values are distributed either around a single strategy (evolutionarily stable strategy, ESS), or around distinct strategies (evolutionary branching, EB). We show that limited dispersal generates spatial aggregation of dispersal traits in ESS and EB scenarios, and that the competition-dispersal trade-off strengthens the pattern in the EB scenario. Importantly, individuals in larger (respectively (resp.) smaller) communities tend to harbour lower (resp. higher) dispersal, especially under the EB scenario. We explore how dispersal evolution affects species diversity patterns by comparing those from our model to the predictions of a neutral metacommunity model. The most marked difference is detected under EB, with distinctive values of both α- and ß-diversity (e.g. the dissimilarity in species composition between small and large communities was significantly larger than neutral predictions). We conclude that, from an empirical perspective, jointly assessing community carrying capacity with species dispersal strategies should improve our understanding of diversity patterns in metacommunities.


Assuntos
Biodiversidade , Evolução Biológica , Ecossistema , Conservação dos Recursos Naturais , Deriva Genética , Aptidão Genética , Especiação Genética , Modelos Biológicos , Polimorfismo Genético
12.
Am Nat ; 185(1): 59-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25560553

RESUMO

Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.


Assuntos
Biodiversidade , Ecossistema , Variação Genética , Mutação , Evolução Biológica , Genética Populacional , Modelos Teóricos , Dinâmica Populacional
13.
Environ Microbiol ; 16(7): 2226-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24373118

RESUMO

Investigating the population biology of plant pathogens in their native areas is essential to understand the factors that shape their population structure and favour their spread. Monomorphic pathogens dispatch extremely low genetic diversity in invaded areas, and native areas constitute a major reservoir for future emerging strains. One of these, the gammaproteobacterium Xanthomonas citri pv. citri, causes Asiatic canker and is a considerable threat to citrus worldwide. We studied its population genetic structure by genotyping 555 strains from 12 Vietnam provinces at 14 tandem repeat loci and insertion sequences. Discriminant analysis of principal components identified six clusters. Five of them were composed of endemic strains distributed heterogeneously across sampled provinces. A sixth cluster, VN6, displayed a much lower diversity and a clonal expansion structure, suggesting recent epidemic spread. No differences in aggressiveness on citrus or resistance to bactericides were detected between VN6 and other strains. VN6 likely represents a case of bioinvasion following introduction in a native area likely through contaminated plant propagative material. Highly polymorphic markers are useful for revealing migration patterns of recently introduced populations of a monomorphic bacterial plant pathogen.


Assuntos
Citrus/microbiologia , Sequências Repetidas Invertidas , Filogenia , Xanthomonas/classificação , Xanthomonas/genética , Técnicas de Tipagem Bacteriana , Marcadores Genéticos , Variação Genética , Genótipo , Espécies Introduzidas , Família Multigênica , Filogeografia , Doenças das Plantas/microbiologia , Vietnã , Xanthomonas/metabolismo
14.
Ecol Evol ; 14(4): e11191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571792

RESUMO

The pace of biological invasions has increased in recent decades, leading to multiple invasions and the potential dominance of invasive species, destabilizing local ecological networks. This provides opportunities to study new ecological species interactions, including predation. Tropical freshwaters have been particularly concerned by aquatic invasions and we focused here on the Martinique island (Lesser Antilles). We examined the predator-prey relationships involving invasive Thiarid snails (Tarebia granifera and Melanoides tuberculata) and the native Neritina punctulata, both confronted with a newcomer predator, the redclaw crayfish (Cherax quadricarinatus). We conducted several mesocosm experiments to assess the impact of crayfish predation on snail survival and the passive and active antipredator responses of snails. A first experiment indicated snail survival rates between 50% and 80%, depending on crayfish size and sex. Notably, there was a negative correlation between snail survival and male crayfish size and the predation method (shell crushing vs. "body sucking") varied with crayfish size. The second experiment suggested no refuge size for snails, with both very small (<5 mm) and very large (>5 mm) unable to escape predation, regardless of crayfish size (from 77 to 138 mm) or sex. Finally, we investigated the escape behavior of Thiarids regarding three crayfish cues. Melanoides tuberculata tend to bury in the substrate and T. granifera to climb up aquarium walls, what was expected from their shell morphologies, and both responding to crayfish cues within minutes. Overall, C. quadricarinatus proves to be an efficient snail predator with limited escape options for snails, potentially contributing to the decline of certain snail populations in Martinique. This omnivorous predator might impact other native species across different groups, including shrimps and fish. Our study underscores the urgent need for monitoring efforts, solidifying the redclaw crayfish reputation as a dangerous invasive species for freshwater macrobenthic faunas worldwide.

15.
Am Nat ; 181(4): 479-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23535613

RESUMO

Quantifying metapopulation dynamics is a challenging task. Difficulties particularly arise in species that possess unobservable resistance forms that bias the estimation of colonization and persistence rates. Here, we develop a general multistate occupancy model that allows estimation of species persistence for both normal and resistant forms, even when the latter are not detectable. We apply this model to an 11-year data set on the tropical freshwater snail Drepanotrema depressissimum in a network of 229 ponds. These ponds frequently dry out, and the snails can persist by aestivating in the ground, where they are not detected. Our model adequately captures this feature because it infers a high persistence rate for the resistant form, while models ignoring aestivation tend to overestimate extinction and colonization. In addition, we find that, surprisingly, colonization and persistence are even higher in sites prone to desiccation and during years with low rainfall than in more humid sites and years, suggesting that D. depressissimum favors unstable sites where competitors are rare and where it can rely on aestivation to persist. Our model has the potential to provide valuable insights into the metapopulation dynamics of many species that otherwise could hardly be studied because of the existence of undetectable life forms.


Assuntos
Ecossistema , Estágios do Ciclo de Vida/fisiologia , Modelos Biológicos , Caramujos/fisiologia , Animais , Estivação , Extinção Biológica , Lagoas , Dinâmica Populacional , Chuva
16.
Curr Biol ; 32(10): 2325-2333.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35483362

RESUMO

Cytoplasmic male sterility (CMS) is a form of genetic conflict over sex determination that results from differences in modes of inheritance between genomic compartments.1-3 Indeed, maternally transmitted (usually mitochondrial) genes sometimes enhance their transmission by suppressing the male function in a hermaphroditic organism to the detriment of biparentally inherited nuclear genes. Therefore, these hermaphrodites become functionally female and may coexist with regular hermaphrodites in so-called gynodioecious populations.3 CMS has been known in plants since Darwin's times4 but is previously unknown in the animal kingdom.5-8 We relate the first observation of CMS in animals. It occurs in a freshwater snail population, where some individuals appear unable to sire offspring in controlled crosses and show anatomical, physiological, and behavioral characters consistent with a suppression of the male function. Male sterility is associated with a mitochondrial lineage that underwent a spectacular acceleration of DNA substitution rates, affecting the entire mitochondrial genome-this acceleration concerns both synonymous and non-synonymous substitutions and therefore results from increased mitogenome mutation rates. Consequently, mitochondrial haplotype divergence within the population is exceptionally high, matching that observed between snail taxa that diverged 475 million years ago. This result is reminiscent of similar accelerations in mitogenome evolution observed in plant clades where gynodioecy is frequent,9,10 both being consistent with arms-race evolution of genome regions implicated in CMS.11,12 Our study shows that genomic conflicts can trigger independent evolution of similar sex-determination systems in plants and animals and dramatically accelerate molecular evolution.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Haplótipos , Mitocôndrias/genética
17.
Curr Biol ; 18(5): 363-7, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18334202

RESUMO

Biological invasions represent major threats to biodiversity as well as large-scale evolutionary experiments. Invasive populations have provided some of the best known examples of contemporary evolution [3-6], challenging the classical view that invasive species are genetically depauperate because of founder effects. Yet the origin of trait genetic variance in invasive populations largely remains a mystery, precluding a clear understanding of how evolution proceeds. In particular, despite the emerging molecular evidence that multiple introductions commonly occur in the same place, their contribution to the evolutionary potential of invasives remains unclear. Here, by using a long-term field survey, mtDNA sequences, and a large-scale quantitative genetic experiment on freshwater snails, we document how a spectacular adaptive potential for key ecological traits can be accumulated in invasive populations. We provide the first direct evidence that multiple introductions are primarily responsible for such an accumulation and that sexual reproduction amplifies this effect by generating novel trait combinations. Thus bioinvasions, destructive as they may be, are not synonyms of genetic uniformity and can be hotspots of evolutionary novelty.


Assuntos
Fluxo Gênico , Variação Genética , Hibridização Genética , Característica Quantitativa Herdável , Caramujos/genética , Adaptação Biológica , Animais , Evolução Biológica , Ecossistema , Martinica , Dinâmica Populacional
18.
Curr Biol ; 18(12): 906-10, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18538571

RESUMO

Senescence, the decline in fitness components of an organism with age [1], is a nearly universal characteristic of living beings [2-6]. This ubiquity is challenging because natural selection does not favor the evolution of traits decreasing fitness [1, 7, 8]. Senescence may result from two nonexclusive mechanisms: the accumulation of deleterious mutations acting late in life, when the strength of natural selection against them declines [9-11] (mutation accumulation or MA hypothesis [12]) and the delayed cost of genes having beneficial effects early in life (antagonistic pleiotropy or AP hypothesis [13]). Few empirical studies have evaluated their contribution to the standing genetic variation in senescence. These studies focused on Drosophila and may be compromised by recent laboratory adaptation [14]. We here study genetic variation in aging patterns in snails (Physa acuta) freshly sampled in natural populations. Our results strongly support the MA theory by validating all its classical predictions, confirming previous results in Drosophila. We also report a striking, novel finding: interbreeding between natural populations alleviates the decline in survival with age. We provide new theoretical models showing this to be another consequence of MA. Our results offer interesting perspectives on how different populations may follow different genetic pathways to evolve senescence.


Assuntos
Envelhecimento/genética , Animais não Endogâmicos/fisiologia , Transtornos do Desenvolvimento Sexual , Mutação , Caramujos/genética , Caramujos/fisiologia , Animais , Modelos Genéticos
19.
Proc Biol Sci ; 278(1721): 3042-9, 2011 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21367786

RESUMO

Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator-prey metacommunities with extinction-colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Animais , Ecossistema , Extinção Biológica , Dinâmica Populacional
20.
BMC Evol Biol ; 10: 381, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21143890

RESUMO

BACKGROUND: Lymnaeidae snails play a prominent role in the transmission of helminths, mainly trematodes of medical and veterinary importance (e.g., Fasciola liver flukes). As this family exhibits a great diversity in shell morphology but extremely homogeneous anatomical traits, the systematics of Lymnaeidae has long been controversial. Using the most complete dataset to date, we examined phylogenetic relationships among 50 taxa of this family using a supermatrix approach (concatenation of the 16 S, ITS-1 and ITS-2 genes, representing 5054 base pairs) involving both Maximum Likelihood and Bayesian Inference. RESULTS: Our phylogenetic analysis demonstrates the existence of three deep clades of Lymnaeidae representing the main geographic origin of species (America, Eurasia and the Indo-Pacific region). This phylogeny allowed us to discuss on potential biological invasions and map important characters, such as, the susceptibility to infection by Fasciola hepatica and F. gigantica, and the haploid number of chromosomes (n). We found that intermediate hosts of F. gigantica cluster within one deep clade, while intermediate hosts of F. hepatica are widely spread across the phylogeny. In addition, chromosome number seems to have evolved from n = 18 to n = 17 and n = 16. CONCLUSION: Our study contributes to deepen our understanding of Lymnaeidae phylogeny by both sampling at worldwide scale and combining information from various genes (supermatrix approach). This phylogeny provides insights into the evolutionary relationships among genera and species and demonstrates that the nomenclature of most genera in the Lymnaeidae does not reflect evolutionary relationships. This study highlights the importance of performing basic studies in systematics to guide epidemiological control programs.


Assuntos
Evolução Biológica , Filogenia , Caramujos/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Vetores de Doenças/classificação , Fasciola/patogenicidade , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA , Caramujos/classificação , Caramujos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA