Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 289: 112420, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831756

RESUMO

This study presents the development of new empirical prediction models to evaluate swell pressure and unconfined compression strength of expansive soils (PsUCS-ES) using three soft computing methods, namely artificial neural networks (ANNs), adaptive neuro fuzzy inference system (ANFIS), and gene expression programming (GEP). An extensive database comprising 168 Ps and 145 UCS records was established after a comprehensive literature search. The nine most influential and easily determined geotechnical parameters were taken as the predictor variables. The network was trained and tested, and the predictions of the proposed models were compared with the observed results. The performance of all the models was tested using mean absolute error (MAE), root squared error (RSE), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), regression coefficient (R2) and relative root mean square error (RRMSE). The sensitivity analysis indicated that the increasing order of inputs importance in case of Ps followed the order: maximum dry density MDD (30.5%) > optimum moisture content OMC (28.7%) > swell percent SP (28.1%) > clay fraction CF (9.4%) > plasticity index PI (3.2%) > specific gravity Gs (0.1%), whereas, in case of UCS it followed the order: sand (44%) > PI (26.3%) > MDD (16.8%) > silt (6.8%) > CF (3%) > SP (2.9%) > Gs (0.2%) > OMC (0.03%). Parametric analysis was also performed and the resulting trends were found to be in line with findings of past literature. The comparison results reflected that GEP and ANN are efficacious and reliable techniques for estimation of PsUCS-ES. The derived mathematical GP-based equations portray the novelty of GEP model and are comparatively simple and reliable. The Roverall values for PsUCS-ES followed the order: ANN > GEP > ANFIS, with all values lying above the acceptable range of 0.80. Hence, all the proposed AI approaches exhibit superior performance, possess high generalization and prediction capability, and evaluate the relative importance of the input parameters in predicting the PsUCS-ES. The GEP model outperformed the other two models in terms of closeness of training, validation and testing data set with the ideal fit (1:1) slope. Evidently the findings of this study can help researchers, designers and practitioners to readily evaluate the swell-strength characteristics of the widespread expansive soils thus curtailing their environmental vulnerabilities which leads to faster, safer and sustainable construction from the standpoint of environment friendly waste management.


Assuntos
Inteligência Artificial , Solo , Expressão Gênica , Redes Neurais de Computação
2.
Sci Rep ; 14(1): 10135, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697995

RESUMO

This article presents a numerical and artificial intelligence (AI) based investigation on the web crippling performance of pultruded glass fiber reinforced polymers' (GFRP) rectangular hollow section (RHS) profiles subjected to interior-one-flange (IOF) loading conditions. To achieve the desired research objectives, a finite element based computational model was developed using one of the popular simulating software ABAQUS CAE. This model was then validated by utilizing the results reported in experimental investigation-based article of Chen and Wang. Once the finite element model was validated, an extensive parametric study was conducted to investigate the aforementioned phenomenon on the basis of which a comprehensive, universal, and coherent database was assembled. This database was then used to formulate the design guidelines for the web crippling design of pultruded GFRP RHS profiles by employing AI based gene expression programming (GEP). Based on the findings of numerical investigation, the web crippling capacity of abovementioned structural profiles subjected to IOF loading conditions was found to be directly related to that of section thickness and bearing length whereas inversely related to that of section width, section height, section's corner radii, and profile length. On the basis of the findings of AI based investigation, the modified design rules proposed by this research were found to be accurately predicting the web crippling capacity of aforesaid structural profiles. This research is a significant contribution to the literature on the development of design guidelines for pultruded GFRP RHS profiles subjected to web crippling, however, there is still a lot to be done in this regard before getting to the ultimate conclusions.

3.
Sci Rep ; 14(1): 8381, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600161

RESUMO

Preplaced aggregate concrete (PAC) also known as two-stage concrete (TSC) is widely used in construction engineering for various applications. To produce PAC, a mixture of Portland cement, sand, and admixtures is injected into a mold subsequent to the deposition of coarse aggregate. This process complicates the prediction of compressive strength (CS), demanding thorough investigation. Consequently, the emphasis of this study is on enhancing the comprehension of PAC compressive strength using machine learning models. Thirteen models are evaluated with 261 data points and eleven input variables. The result depicts that xgboost demonstrates exceptional accuracy with a correlation coefficient of 0.9791 and a normalized coefficient of determination (R2) of 0.9583. Moreover, Gradient boosting (GB) and Cat boost (CB) also perform well due to its robust performance. In addition, Adaboost, Voting regressor, and Random forest yield precise predictions with low mean absolute error (MAE) and root mean square error (RMSE) values. The sensitivity analysis (SA) reveals the significant impact of key input parameters on overall model sensitivity. Notably, gravel takes the lead with a substantial 44.7% contribution, followed by sand at 19.5%, cement at 15.6%, and Fly ash and GGBS at 5.9% and 5.1%, respectively. The best fit model i.e., XG-Boost model, was employed for SHAP analysis to assess the relative importance of contributing attributes and optimize input variables. The SHAP analysis unveiled the water-to-binder (W/B) ratio, superplasticizer, and gravel as the most significant factors influencing the CS of PAC. Furthermore, graphical user interface (GUI) have been developed for practical applications in predicting concrete strength. This simplifies the process and offers a valuable tool for leveraging the model's potential in the field of civil engineering. This comprehensive evaluation provides valuable insights to researchers and practitioners, empowering them to make informed choices in predicting PAC compressive strength in construction projects. By enhancing the reliability and applicability of predictive models, this study contributes to the field of preplaced aggregate concrete strength prediction.

4.
Heliyon ; 10(8): e28951, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655367

RESUMO

The hydrological regimes of watersheds might be drastically altered by climate change, a majority of Pakistan's watersheds are experiencing problems with water quality and quantity as a result precipitation changes and temperature, necessitating evaluation and alterations to management strategies. In this study, the regional water security in northern Pakistan is examined about anthropogenic climate change on runoff in the Kunhar River Basin (KRB), a typical river in northern Pakistan using Soil and Water Assessment tool (SWAT) and flow durarion curve (FDC). Nine general circulation models (GCMs) were successfully utilized following bias correction under two latest IPCC shared socioeconomic pathways (SSPs) emission scenarios. Correlation coefficients (R2), Nash-Sutcliffe efficiency coefficients (NSE), and the Percent Bias (PBIAS) are all above 0.75. The conclusions demonstrate that the SWAT model precisely simulates the runoff process in the KRB on monthly and daily timescales. For the two emission scenarios of SSP2-4.5 and SSP5-8.5, the mean annual precipitation is predicted to rise by 3.08 % and 5.86 %, respectively, compared to the 1980-2015 baseline. The forecasted rise in mean daily high temperatures is expected to range from 2.08 °C to 3.07 °C, while the anticipated increase in mean daily low temperatures is projected to fall within the range of 2.09 °C-3.39 °C, spanning the years 2020-2099. Under the two SSPs scenarios, annual runoff is estimated to increase by 5.47 % and 7.60 % due to climate change during the same period. Future socioeconomic growth will be supported by a sufficient water supply made possible by the rise in runoff. However, because of climate change, there is a greater possibility of flooding because of increases in both rainfall and runoff. As a result, flood control and development plans for KRB must consider the climate change's possible effects. There is a chance that the peak flow will move backwards relative to the baseline.

5.
Sci Rep ; 14(1): 14617, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918460

RESUMO

The use of waste foundry sand (WFS) in concrete production has gained attention as an eco-friendly approach to waste reduction and enhancing cementitious materials. However, testing the impact of WFS in concrete through experiments is costly and time-consuming. Therefore, this study employs machine learning (ML) models, including support vector regression (SVR), decision tree (DT), and AdaBoost regressor (AR) ensemble model to predict concrete properties accurately. Moreover, SVR was employed in conjunction with three robust optimization algorithms: the firefly algorithm (FFA), particle swarm optimization (PSO), and grey wolf optimization (GWO), to construct hybrid models. Using 397 experimental data points for compressive strength (CS), 146 for elastic modulus (E), and 242 for split tensile strength (STS), the models were evaluated with statistical metrics and interpreted using the SHapley Additive exPlanation (SHAP) technique. The SVR-GWO hybrid model demonstrated exceptional accuracy in predicting waste foundry sand concrete (WFSC) strength characteristics. The SVR-GWO hybrid model exhibited correlation coefficient values (R) of 0.999 for CS and E, and 0.998 for STS. Age was found to be a significant factor influencing WFSC properties. The ensemble model (AR) also exhibited comparable prediction accuracy to the SVR-GWO model. In addition, SHAP analysis revealed an optimal content of input variables in the concrete mix. Overall, the hybrid and ensemble models showed exceptional prediction accuracy compared to individual models. The application of these sophisticated soft computing prediction techniques holds the potential to stimulate the widespread adoption of WFS in sustainable concrete production, thereby fostering waste reduction and bolstering the adoption of environmentally conscious construction practices.

6.
Sci Rep ; 14(1): 18244, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107557

RESUMO

Accurately predicting the Modulus of Resilience (MR) of subgrade soils, which exhibit non-linear stress-strain behaviors, is crucial for effective soil assessment. Traditional laboratory techniques for determining MR are often costly and time-consuming. This study explores the efficacy of Genetic Programming (GEP), Multi-Expression Programming (MEP), and Artificial Neural Networks (ANN) in forecasting MR using 2813 data records while considering six key parameters. Several Statistical assessments were utilized to evaluate model accuracy. The results indicate that the GEP model consistently outperforms MEP and ANN models, demonstrating the lowest error metrics and highest correlation indices (R2). During training, the GEP model achieved an R2 value of 0.996, surpassing the MEP (R2 = 0.97) and ANN (R2 = 0.95) models. Sensitivity and SHAP (SHapley Additive exPlanations) analysis were also performed to gain insights into input parameter significance. Sensitivity analysis revealed that confining stress (21.6%) and dry density (26.89%) are the most influential parameters in predicting MR. SHAP analysis corroborated these findings, highlighting the critical impact of these parameters on model predictions. This study underscores the reliability of GEP as a robust tool for precise MR prediction in subgrade soil applications, providing valuable insights into model performance and parameter significance across various machine-learning (ML) approaches.

7.
Sci Rep ; 14(1): 18152, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103486

RESUMO

Brittle shear failure of beam-column joints, especially during seismic events poses a significant threat to structural integrity. This study investigates the potential of steel fiber reinforced concrete (SFRC) in the joint core to enhance ductility and overcome construction challenges associated with traditional reinforcement. A non-linear finite element analysis (NLFEA) using ABAQUS software was conducted to simulate the behavior of SFRC beam-column joints subjected to cyclic loading. Ten simulated specimens were analyzed to discern the impact of varying steel fiber volume fraction and aspect ratio on joint performance. Key findings reveal that a 2% volume fraction of steel fibers in the joint core significantly improves post-cracking behavior by promoting ductile shear failure, thereby increasing joint toughness. While aspect ratio variations showed minimal impact on load capacity, long and thin steel fibers effectively bridge cracks, delaying their propagation. Furthermore, increasing steel fiber content resulted in higher peak-to-peak stiffness. This research suggests that strategically incorporating SFRC in the joint core can promote ductile shear failure, enhance joint toughness, and reduce construction complexities by eliminating the need for congested hoops. Overall, the developed NLFEA model proves to be a valuable tool for investigating design parameters in SFRC beam-column joints under cyclic loading.

8.
Sci Rep ; 14(1): 13688, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871797

RESUMO

The escalation of global urbanization and industrial expansion has resulted in an increase in the emission of harmful substances into the atmosphere. Evaluating the effectiveness of titanium dioxide (TiO2) in photocatalytic degradation through traditional methods is resource-intensive and complex due to the detailed photocatalyst structures and the wide range of contaminants. Therefore in this study, recent advancements in machine learning (ML) are used to offer data-driven approach using thirteen machine learning techniques namely XG Boost (XGB), decision tree (DT), lasso Regression (LR2), support vector regression (SVR), adaBoost (AB), voting Regressor (VR), CatBoost (CB), K-Nearest Neighbors (KNN), gradient boost (GB), random Forest (RF), artificial neural network (ANN), ridge regression (RR), linear regression (LR1) to address the problem of estimation of TiO2 photocatalytic degradation rate of air contaminants. The models are developed using literature data and different methodical tools are used to evaluate the developed ML models. XGB, DT and LR2 models have high R2 values of 0.93, 0.926 and 0.926 in training and 0.936, 0.924 and 0.924 in test phase. While ANN, RR and LR models have lowest R2 values of 0.70, 0.56 and 0.40 in training and 0.62, 0.63 and 0.31 in test phase respectively. XGB, DT and LR2 have low MAE and RMSE values of 0.450 min-1/cm2, 0.494 min-1/cm2 and 0.49 min-1/cm2 for RMSE and 0.263 min-1/cm2, 0.285 min-1/cm2 and 0.29 min-1/cm2 for MAE in test stage. XGB, DT, and LR2 have 93% percent errors within 20% error range in training phase. XGB has 92% and DT, and LR2 have 94% errors with 20% range in test phase. XGB, DT, LR2 models remained the highest performing models and XGB is the most robust and effective in predictions. Feature importances reveal the role of input parameters in prediction made by developed ML models. Dosage, humidity, UV light intensity remain important experimental factors. This study will impact positively in providing efficient models to estimate photocatalytic degradation rate of air contaminants using TiO2.

9.
Sci Rep ; 14(1): 18145, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103567

RESUMO

Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.

10.
Sci Rep ; 14(1): 449, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172191

RESUMO

The coronavirus (COVID-19) pandemic has not only had a severe impact on global health but also poses a threat to the environment. This research aims to explore an innovative approach to address the issue of increased waste generated by the pandemic. Specifically, the study investigates the utilization of discarded face masks in combination with recycled concrete aggregate (RCA) and Silica Fume (SFM) in civil construction projects. The disposable face masks were processed by removing the ear loops and nose strips, and then cutting them into small fibers measuring 20 mm in length, 5 mm in width, and 0.46 mm in thickness, resulting in an aspect ratio of 24. Various proportions of SFM and RCA were incorporated into the concrete mix, with a focus on evaluating the compressive strength, split tensile strength, and durability of the resulting material. The findings indicate that the addition of SFM led to improvements in both compressive and split tensile strength, while no significant impact on durability was observed.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Dióxido de Silício , Máscaras , Materiais de Construção , Resíduos Industriais/análise
11.
Heliyon ; 9(11): e21601, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027981

RESUMO

A recently introduced bendable concrete having hundred times greater strain capacity provides promising results in repair of engineering structures, known as strain hardening cementitious composites (SHHCs). The current research creates new empirical prediction models to assess the mechanical properties of strain-hardening cementitious composites (SHCCs) i.e., compressive strength (CS), first crack tensile stress (TS), and first crack flexural stress (FS), using gene expression programming (GEP). Wide-ranging records were considered with twelve variables i.e., cement percentage by weight (C%), fine aggregate percentage by weight (Fagg%), fly-ash percentage by weight (FA%), Water-to-binder ratio (W/B), super-plasticizer percentage by weight (SP%), fiber amount percentage by weight (Fib%), length to diameter ratio (L/D), fiber tensile strength (FTS), fiber elastic modulus (FEM), environment temperature (ET), and curing time (CT). The performance of the models was deduced using correlation coefficient (R) and slope of regression line. The established models were also assessed using relative root mean square error (RRMSE), Mean absolute error (MAE), Root squared error (RSE), root mean square error (RMSE), objective function (OBF), performance index (PI) and Nash-Sutcliffe efficiency (NSE). The resulting mathematical GP-based equations are easy to understand and are consistent disclosing the originality of GEP model with R in the testing phase equals to 0.8623, 0.9269, and 0.8645 for CS, TS and FS respectively. The PI and OBF are both less than 0.2 and are in line with the literature, showing that the models are free from overfitting. Consequently, all proposed models have high generalization with less error measures. The sensitivity analysis showed that C%, Fagg%, and ET are the most significant variables for all three models developed with sensitiveness index higher than 10 %. The result of the research can assist researchers, practitioners, and designers to assess SHCC and will lead to sustainable, faster, and safer construction from environment-friendly waste management point of view.

12.
Heliyon ; 9(6): e17107, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484238

RESUMO

Plastic waste poses a significant hazard to the environment as a result of its high production rates, which endanger both the environment and its inhabitants. Similarly, another concern is the production of cement, which accounts for roughly 8% of global CO2 emissions. Thus, recycling plastic waste as a replacement for cementitious materials may be a more effective strategy for waste minimisation and cement elimination. Therefore, in this study, plastic waste (low-density polyethylene) is utilised in the production of plastic sand paver blocks without the use of cement. In addition to this, basalt fibers which is a green industrial material is also added in the production of eco-friendly plastic sand paver blocks to satisfy the standard of ASTM C902-15 of 20 N/mm2 for the light traffic. In order to make the paver blocks, the LDPE waste plastic was melted outside in the open air and then combined with sand. Variations were made to the ratio of LDPE to sand, the proportion of basalt fibers, and sand particle size. Paver blocks were evaluated for their compressive strength, water absorption, and at different temperatures. Including 0.5% percent basalt fiber of length 4 mm gives us the best result by enhancing compressive strength by 20.5% and decreasing water absorption by 50.5%. The best results were obtained with a ratio of 30:70 LDPE to sand, while the finest sand provides the greatest compressive strength. Moreover, the temperature effect was also studied from 0 to 60 °C, and the basalt fibers incorporated in plastic paver blocks showed only a 20% decrease in compressive strength at 60 °C. This research has produced eco-friendly paver blocks by removing cement and replacing it with plastic waste, which will benefit the environment, save money, reduce carbon dioxide emissions, and be suitable for low-traffic areas, all of which contribute to sustainable development.

13.
Sci Rep ; 13(1): 12149, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500697

RESUMO

Plastic sand paver blocks provide a sustainable alternative by using plastic waste and reducing the need for cement. This innovative approach leads to a more sustainable construction sector by promoting environmental preservation. No model or Equation has been devised that can predict the compressive strength of these blocks. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) to develop empirical models to forecast the compressive strength of plastic sand paver blocks (PSPB) comprised of plastic, sand, and fibre in an effort to advance the field. The database contains 135 results for compressive strength with seven input parameters. The R2 values of 0.87 for GEP and 0.91 for MEP for compressive strength reveal a relatively significant relationship between predicted and actual values. MEP outperformed GEP by displaying a higher R2 and lower values for statistical evaluations. In addition, a sensitivity analysis was conducted, which revealed that the sand grain size and percentage of fibres play an essential part in compressive strength. It was estimated that they contributed almost 50% of the total. The outcomes of this research have the potential to promote the reuse of PSPB in the building of green environments, hence boosting environmental protection and economic advantage.


Assuntos
Plásticos , Areia , Força Compressiva , Inteligência Artificial , Expressão Gênica
14.
Heliyon ; 9(2): e13322, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825192

RESUMO

Land Surface Temperature (LST) affects exchange of energy between earth surface and atmosphere which is important for studying environmental changes. However, research on the relationship between LST, Land Use Land Cover (LULC), and Normalized Difference Vegetation Index (NDVI) with topographic elements in the lower Himalayan region has not been done. Therefore, the present study explored the relationship between LST and NDVI, and LULC types with topographic elements in the lower Himalayan region of Pakistan. The study area was divided into North-South, West-East, North-West to South-East and North-East to South-East directions using ArcMap 3D analysis. The current study used Landsat 8 (OLI/TIRS) data from May 2021 for LULC and LST analysis in the study area. The LST data was obtained from the thermal band of Landsat 8 (TIRS), while the LULC of the study areas was classified using the Maximum Likelihood Classification (MLC) method utilizing Landsat 8 (OLI) data. TIRS collects data for two narrow spectral bands (B10 and B11) with spectral wavelength of 10.6 µm-12.51 µm in the thermal region formerly covered by one wide spectral band (B6) on Landsat 4-7. With 12-bit data products, TIRS data is available in radiometric, geometric, and terrain-corrected file format. The effect of elevation on LST was assessed using LST and elevation data obtained from the USGS website. The LST across LULC types with sunny and shady slopes was analyzed to assess the influence of slope directions. The relationship of LST with elevation and NDVI was examined using correlation analysis. The results indicated that LST decreased from North-South and South-East, while increasing from North-East and South-West directions. The correlation coefficient between LST and elevation was negative, with an R-value of -0.51. The NDVI findings with elevation showed that NDVI increases with an increase in elevation. Zonal analysis of LST for different LULC types showed that built-up and bare soil had the highest mean LST, which was 35.76 °C and 28.08 °C, respectively, followed by agriculture, vegetation, and water bodies. The mean LST difference between sunny and shady slopes was 1.02 °C. The correlation between NDVI and LST was negative for all LULC types except the water body. This study findings can be used to ensure sustainable urban development and minimize urban heat island effects by providing effective guidelines for urban planners, policymakers, and respective authorities in the Lower Himalayan region. The current thermal remote sensing findings can be used to model energy fluxes and surface processes in the study area.

15.
Heliyon ; 9(3): e14457, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950647

RESUMO

The purpose of this research was to conduct a scientometric evaluation of the literature pertaining to plastic sand in order to evaluate its many aspects. Conventional review studies have several limitations when it comes to their capacity to completely and properly link different sections of the published research. Some of the more complicated features of advanced research are co-occurrence analysis, science mapping and co-citation analysis. During the study, the most inventive authors/researchers renowned for citations, the sources with the largest number of publications, the actively involved domains, and co-occurrences of keywords in the research on plastic sand are investigated. This study is limited to scientometric analysis of the available literature data on plastic sand. The VOSviewer application (version 1.6.18) was used to perform the analysis after bibliometric data for 4512 publications were extracted from the Scopus database and utilised in the extraction process from the year 2021 to June 2022. With the support of a statistical and graphical description of researchers and nations that are contributing, this study will aid researchers in the establishment of collaborative ventures and the exchange of fresh techniques and ideas with one another.

16.
Sci Rep ; 13(1): 19909, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964000

RESUMO

When molten magma solidifies, basalt fiber (BF) is produced as a byproduct. Due to its remaining pollutants that could affect the environment, it is regarded as a waste product. To determine the compressive strength (CS) and tensile strength (TS) of basalt fiber reinforced concrete (BFRC), this study will develop empirical models using gene expression programming (GEP), Artificial Neural Network (ANN) and Extreme Gradient Boosting (XG Boost). A thorough search of the literature was done to compile a variety of information on the CS and TS of BFRC. 153 CS findings and 127 TS outcomes were included in the review. The water-to-cement, BF, fiber length (FL), and coarse aggregates ratios were the influential characteristics found. The outcomes showed that GEP can accurately forecast the CS and TS of BFRC as compared to ANN and XG Boost. Efficiency of GEP was validated by comparing Regression (R2) value of all three models. It was shown that the CS and TS of BFRC increased initially up to a certain limit and then started decreasing as the BF % and FL increased. The ideal BF content for industrial-scale BF reinforcement of concrete was investigated in this study which could be an economical solution for production of BFRC on industrial scale.

17.
Materials (Basel) ; 15(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629515

RESUMO

The emission of greenhouse gases and natural-resource depletion caused by the production of ordinary Portland cement (OPC) have a detrimental effect on the environment. Thus, an alternative means is required to produce eco-friendly concrete such as geopolymer concrete (GPC). However, GPC has a complex cementitious matrix and an ambiguous mix design. Aside from that, the composition and proportions of materials utilized may have an impact on the compressive strength. Similarly, the use of robust and efficient machine-learning (ML) approaches is now required to forecast the strength of such a composite cementitious matrix. As a result, this study anticipated the compressive strength of GPC with waste resources using ensemble and non-ensemble ML algorithms. This was accomplished through the use of Anaconda (Python). To build a strong ensemble learner by integrating weak learners, adaptive boosting, random forest (RF), and ensemble learner bagging were employed. Furthermore, ensemble learners were utilized on non-ensemble or weak learners, such as decision trees (DT) and support vector machines (SVM) via regression. The data encompassed 156 statistical samples in which nine variables, namely superplasticizer (kg/m3), fly ash (kg/m3), ground granulated blast-furnace slag (GGBS), temperature (°C), coarse and fine aggregate (kg/m3), sodium silicate (Na2SiO3), and sodium hydroxide (NaOH), were chosen to anticipate the results. Exploring it in depth, twenty sub-models with ensemble boosting and bagging approaches were trained, and tuning was performed to achieve the highest possible coefficient of determination (R2). Moreover, cross K-Fold validation analysis and statistical checks were performed via indicators for the evaluation of the models. The result revealed that ensemble approaches yielded robust performance compared to non-ensemble algorithms. Generally, an ensemble learner with the RF and bagging approach on a DT yielded robust performance by achieving a better R2 as 0.93, and with the lowest statistical errors. The communal model in artificial-intelligence analysis, on average, improved the accuracy of the model.

18.
Materials (Basel) ; 15(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363323

RESUMO

For the creation of healable cement concrete matrix, microbial self-healing solutions are significantly more creative and potentially successful. The current study investigates whether gram-positive "Bacillus subtilis" (B. subtilis) microorganisms can effectively repair structural and non-structural cracks caused at the nano- and microscale. By creating an effective immobilization strategy in a coherent manner, the primary challenge regarding the viability of such microbes in a concrete mixture atmosphere has been successfully fulfilled. The iron oxide nanoparticles were synthesized. The examined immobilizing medium was the iron oxide nanoparticles, confirmed using different techniques (XRD, SEM, EDX, TGA, and FTIR). By measuring the average compressive strength of the samples (ASTM C109) and evaluating healing, the impact of triggered B. subtilis bacteria immobilized on iron oxide nanoparticles was examined. The compressive strength recovery of cracked samples following a therapeutic interval of 28 days served as a mechanical indicator of the healing process. In order to accurately correlate the recovery performance as a measure of crack healing duration, the pre-cracking load was set at 80% of the ultimate compressive stress, or "f c," and the period of crack healing was maintained at 28 days. According to the findings, B. subtilis bacteria greatly enhanced the compressive strength and speed up the healing process in cracked cement concrete mixture. The iron oxide nanoparticles were proven to be the best immobilizer for keeping B. subtilis germs alive until the formation of fractures. The bacterial activity-driven calcite deposition in the generated nano-/micro-cracks was supported by micrographic and chemical investigations (XRD, FTIR, SEM, and EDX).

19.
Materials (Basel) ; 15(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888263

RESUMO

The scientometric analysis is statistical scrutiny of books, papers, and other publications to assess the "output" of individuals/research teams, organizations, and nations, to identify national and worldwide networks, and to map the creation of new (multi-disciplinary) scientific and technological fields that would be beneficial for the new researchers in the particular field. A scientometric review of 3D printing concrete is carried out in this study to explore the different literature aspects. There are limitations in conventional and typical review studies regarding the capacity of such studies to link various elements of the literature accurately and comprehensively. Some major problematic phases in advanced level research are: co-occurrence, science mapping, and co-citation. The sources with maximum articles, the highly creative researchers/authors known for citations and publications, keywords co-occurrences, and actively involved domains in 3D printing concrete research are explored during the analysis. VOS viewer application analyses bibliometric datasets with 953 research publications were extracted from the Scopus database. The current study would benefit academics for joint venture development and sharing new strategies and ideas due to the graphical and statistical depiction of contributing regions/countries and researchers.

20.
Materials (Basel) ; 15(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35329449

RESUMO

Preplaced aggregate concrete (PAC) is prepared in two steps, with the coarse aggregate being initially laid down in the formwork, after which a specialised grout is injected into it. To enhance the properties of concrete and to reduce the emission of CO2 produced during the production of cement, supplementary cementitious materials (SCMs) are used to partially substitute ordinary Portland cement (OPC). In this study, 100 mm × 200 mm (diameter x height) PAC cylinders were cast with 10 per cent of cement being substituted with silica fume; along with that, 1.5% dosage of Macro polypropylene fibres were also introduced into the coarse aggregate matrix. Compressive strength test, splitting tensile strength test, mass loss at 250 °C, and compressive strength at 250 °C were performed on the samples. PAC samples with 10% of cement replaced with Silica Fume (SPAC) were used as control samples. The primary objective of this study was to observe the effect of the addition of Polypropylene fibres to PAC having Silica fume as SCM (FRPAC). The aforementioned tests showed that FRPAC had a lower compressive strength than that of the control mix (SPAC). FRPAC had greater tensile strength than that of NPAC and SPAC. Mass loss at 250 °C was greater in SPAC compared to FRPAC. The compressive strength loss at 250 °C was significantly greater in FRPAC compared to SPAC. FRPAC exhibited a greater strain for the applied stress, and their stress-strain curve showed that FRPAC was more ductile than SPAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA