Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Immunol ; 22(12): 1470-1471, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811545
2.
Bioorg Chem ; 150: 107530, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38852310

RESUMO

The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.

3.
Mol Cell ; 57(6): 951-952, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794612

RESUMO

In this issue of Molecular Cell,Samanovic et al. (2015) identify that the mycobacterial proteasomal substrate encoded by Rv1205, which appears to code for a homolog of the plant-like enzyme LONELY GUY, is responsible for proteasome-mediated nitric oxide resistance.


Assuntos
Citocininas/biossíntese , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais
4.
Proc Natl Acad Sci U S A ; 117(32): 19487-19496, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723820

RESUMO

Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Ferro/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-33257450

RESUMO

Accurate antibiotic susceptibility testing is essential for successful tuberculosis treatment. Recent studies have highlighted the limitations of MIC-based phenotypic susceptibility methods in detecting other aspects of antibiotic susceptibilities in bacteria. Duration and peak of antibiotic exposure, at or above the MIC required for killing the bacterial population, has emerged as another important factor for determining antibiotic susceptibility. This is broadly defined as antibiotic tolerance. Antibiotic tolerance can further facilitate the emergence of antibiotic resistance. Currently, there are limited methods to quantify antibiotic tolerance among clinical M. tuberculosis isolates. In this study, we develop a most-probable-number (MPN)-based minimum duration of killing (MDK) assay to quantify the spectrum of M. tuberculosis rifampicin susceptibility within subpopulations based on the duration of rifampicin exposure required for killing the bacterial population. MDK90-99 and MDK99.99 were defined as the minimum duration of antibiotic exposure at or above the MIC required for killing 90 to 99% and 99.99% of the initial (pretreatment) bacterial population, respectively. Results from the rifampicin MDK assay applied to 28 laboratory and clinical M. tuberculosis isolates showed that there is variation in rifampicin susceptibility among isolates. The rifampicin MDK99/99.99 time for isolates varied from less than 2 to 10 days. MDK was correlated with larger subpopulations of M. tuberculosis from clinical isolates that were rifampicin tolerant. Our study demonstrates the utility of MDK assays to measure the variation in antibiotic tolerance among clinical M. tuberculosis isolates and further expands clinically important aspects of antibiotic susceptibility testing.


Assuntos
Mycobacterium tuberculosis , Rifampina , Antituberculosos/farmacologia , RNA Polimerases Dirigidas por DNA , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Rifampina/farmacologia
6.
Clin Immunol ; 215: 108443, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32353633

RESUMO

A 29-year old male with recurrent respiratory and skin infections, anaemia and neutropaenia during childhood required immunoglobulin replacement for antibody deficiency from age 16. He remained relatively well until age 28 when he presented with a two-week history of fatigue, sore throat, fever and productive cough. He was found to have EBV viraemia and splenomegaly and a diagnosis of EBV-driven lymphoproliferative disease was made following bone marrow trephine. Family history was notable with three siblings: a healthy sister and two brothers with anaemia and neutropaenia; one who succumbed to septicaemia secondary to neutropaenic enterocolitis age 5 and another who developed intestinal vasculitis and antibody deficiency and had a successful haemopoetic stem cell transplant. The proband's DNA underwent targeted sequencing of 279 genes associated with immunodeficiency (GRID panel). The best candidates were two ADA2 variants, p.Arg169Gln (R169Q) and p.Asn370Lys (N370K). Sanger sequencing and co-segregation of variants in the parents, unaffected sister and all three affected brothers was fully consistent with compound heterozygous inheritance. Subsequent whole genome sequencing of the proband identified no other potential causal variants. ADA2 activity was consistent with a diagnosis of ADA2 deficiency in affected family members. This is the first description of EBV-driven lymphoproliferative disease in ADA2 deficiency. ADA2 deficiency may cause susceptibility to severe EBV-induced disease and we would recommend that EBV status and viral load is monitored in patients with this diagnosis and allogeneic SCT is considered at an early stage for patients whose ADA2 deficiency is associated with significant complications.


Assuntos
Adenosina Desaminase/deficiência , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidade , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Transtornos Linfoproliferativos/complicações , Transtornos Linfoproliferativos/metabolismo , Adulto , Humanos , Masculino
7.
Proc Natl Acad Sci U S A ; 114(19): 5023-5028, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438994

RESUMO

The role of Igs in natural protection against infection by Mycobacterium tuberculosis (Mtb), the causative agent of TB, is controversial. Although passive immunization with mAbs generated against mycobacterial antigens has shown protective efficacy in murine models of infection, studies in B cell-depleted animals only showed modest phenotypes. We do not know if humans make protective antibody responses. Here, we investigated whether healthcare workers in a Beijing TB hospital-who, although exposed to suprainfectious doses of pathogenic Mtb, remain healthy-make antibody responses that are effective in protecting against infection by Mtb. We tested antibodies isolated from 48 healthcare workers and compared these with 12 patients with active TB. We found that antibodies from 7 of 48 healthcare workers but none from active TB patients showed moderate protection against Mtb in an aerosol mouse challenge model. Intriguingly, three of seven healthcare workers who made protective antibody responses had no evidence of prior TB infection by IFN-γ release assay. There was also good correlation between protection observed in vivo and neutralization of Mtb in an in vitro human whole-blood assay. Antibodies mediating protection were directed against the surface of Mtb and depended on both immune complexes and CD4+ T cells for efficacy. Our results indicate that certain individuals make protective antibodies against Mtb and challenge paradigms about the nature of an effective immune response to TB.


Assuntos
Anticorpos Antibacterianos/sangue , Mycobacterium tuberculosis/imunologia , Exposição Ocupacional , Médicos , Tuberculose Pulmonar/sangue , Adulto , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/imunologia
8.
Trends Biochem Sci ; 39(8): 355-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25023410

RESUMO

The translation of genes into functional proteins involves error. Mistranslation is a known cause of disease, but, surprisingly, recent studies suggest that certain organisms from all domains of life have evolved diverse pathways that increase their tolerance of translational error. Although the reason for these high error rates are not yet clear, evidence suggests that increased mistranslation may have a role in the generation of diversity within the proteome and other adaptive functions. Error rates are regulated, and there appears to be an optimal mistranslation rate that varies by organism and environmental condition. Advances in unbiased interrogation of error types and experiments involving wild organisms may help our understanding of the potentially adaptive roles for protein translation errors.


Assuntos
Evolução Molecular , Variação Genética , Biossíntese de Proteínas , Proteínas/genética , Proteoma/biossíntese , Edição de RNA/genética , Animais , Humanos
9.
Euro Surveill ; 23(39)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30280689

RESUMO

In early 2017, a United Kingdom (UK)-born person in their 20s presented with a skin ulcer on the foot 3 weeks after returning from Ghana. The patient had last received a diphtheria-containing vaccine in 2013, completing the recommended course. MALDI-TOF of a cutaneous swab identified Corynebacterium diphtheriae. Real-time PCR ascertained the species and presence of the diphtheria toxin gene. An Elek test confirmed toxigenicity. The isolate was macrolide sensitive and penicillin resistant. The local Public Health England (PHE) Health Protection Team obtained the patient's clinical history and traced contacts to inform appropriate public health action. One close contact (in their early 80s with uncertain immunisation status who had not recently travelled) had a positive throat swab for toxigenic C. diphtheriae and reported a history of mild coryzal symptoms. Multilocus sequence typing revealed that strains from the index case and contact had Sequence Type 463. Diphtheria is extremely rare in the UK due to high vaccine coverage and this is the first documented transmission in 30 years. Clinicians and laboratory staff should remain highly suspicious of lesions in overseas travellers, even when patients are fully vaccinated. Older individuals who might not have completed a full immunisation course may have higher diphtheria susceptibility.


Assuntos
Busca de Comunicante , Infecções por Corynebacterium/transmissão , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/isolamento & purificação , Difteria/diagnóstico , Viagem , Infecções por Corynebacterium/diagnóstico , Notificação de Doenças , Gana , Humanos , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase em Tempo Real , Reino Unido
10.
Proc Natl Acad Sci U S A ; 111(3): 1132-7, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395793

RESUMO

Errors are inherent in all biological systems. Errors in protein translation are particularly frequent giving rise to a collection of protein quasi-species, the diversity of which will vary according to the error rate. As mistranslation rates rise, these new proteins could produce new phenotypes, although none have been identified to date. Here, we find that mycobacteria substitute glutamate for glutamine and aspartate for asparagine at high rates under specific growth conditions. Increasing the substitution rate results in remarkable phenotypic resistance to rifampicin, whereas decreasing mistranslation produces increased susceptibility to the antibiotic. These phenotypic changes are reflected in differential susceptibility of RNA polymerase to the drug. We propose that altering translational fidelity represents a unique form of environmental adaptation.


Assuntos
Antibióticos Antituberculose/química , Farmacorresistência Bacteriana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Biossíntese de Proteínas , Rifampina/química , Sequência de Aminoácidos , Asparagina/química , Ácido Aspártico/química , RNA Polimerases Dirigidas por DNA/química , Ácido Glutâmico/química , Glutamina/química , Dados de Sequência Molecular , Mutação , Fenótipo , Proteômica , Recombinação Genética
11.
J Clin Microbiol ; 53(8): 2781-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063862

RESUMO

Drug resistance to tuberculosis remains a major public health threat. Here, we report two cases of extended-spectrum extensively drug-resistant (XXDR) tuberculosis showing resistance to most first- and second-line agents. The results of a correlation of whole-genome sequencing (WGS) and phenotypic testing were discordant, suggesting that overreliance on WGS may miss clinically relevant resistance in extensively drug-resistant disease.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/transmissão , Genoma Bacteriano , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Adulto , Antituberculosos/farmacologia , Pequim , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mycobacterium tuberculosis/isolamento & purificação , Análise de Sequência de DNA
12.
Br Med Bull ; 110(1): 129-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24810849

RESUMO

INTRODUCTION: Drug-resistant tuberculosis (DR-TB) is associated with increased mortality and morbidity. This is at least partly due to late diagnosis and ineffective treatment of drug-resistant status. SOURCES OF DATA: Selective search of the literature on DR-TB supplemented by recent guidelines from the World Health Organization. AREAS OF AGREEMENT: Better and more rapid diagnosis of DR-TB by new techniques such as Xpert Mtb/RIF are likely to make a substantial impact on the disease. New therapeutics for DR-TB are entering, or about to enter the market for the first time in decades. AREAS OF CONTROVERSY: It is not clear whether new treatments should be restricted for DR-TB or also used for drug-susceptible tuberculosis. GROWING POINTS: With several new agents on the horizon, there is the real possibility of an entirely new regimen for tuberculosis. AREAS TIMELY FOR DEVELOPING RESEARCH: An inexpensive 'near-patient' diagnostic test is still needed. Optimizing new drug combination regimens in a timely manner is urgently required.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
13.
J Clin Tuberc Other Mycobact Dis ; 35: 100425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468819

RESUMO

A teenage girl presented with fever and altered mental status. MRI showed diffuse leptomeningeal enhancement of the brain and spine. She was diagnosed by a positive cerebrospinal fluid (CSF) culture with tuberculous (TB) meningitis and was started on anti-TB medications and corticosteroids. Her mental status improved, but she was noted to have proximal weakness of the lower extremities. In the course of tapering corticosteroids at week 11 of anti-TB therapy, she became acutely confused and febrile. MRI demonstrated interval development of tuberculomas in the brain and a mass lesion in the thoracic spine causing cord compression. Given the clinical picture was suggestive of a paradoxical reaction, the dose of corticosteroids was increased. Infliximab was added when repeat MRI revealed enlargement of the mass lesion in the spine with worsening cord compression. She was successfully tapered off of corticosteroids. Over several months, the patient's motor function recovered fully, and she returned to ambulating without assistance.

14.
Sci Adv ; 10(1): eadh7957, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170768

RESUMO

Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.


Assuntos
Mycobacterium , Macrófagos/metabolismo , Fagócitos , Membrana Celular
15.
Antimicrob Agents Chemother ; 57(12): 6311-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100503

RESUMO

Posttranscriptional modifications of bacterial rRNA serve a variety of purposes, from stabilizing ribosome structure to preserving its functional integrity. Here, we investigated the functional role of one rRNA modification in particular-the methylation of guanosine at position 518 (G518) of the 16S rRNA in Mycobacterium tuberculosis. Based on previously reported evidence that G518 is located 5 Å; from proline 44 of ribosomal protein S12, which interacts directly with the mRNA wobble position of the codon:anticodon helix at the A site during translation, we speculated that methylation of G518 affects protein translation. We transformed reporter constructs designed to probe the effect of functional lesions at one of the three codon positions on translational fidelity into the wild-type strain, H37Rv, and into a ΔgidB mutant, which lacks the methyltransferase (GidB) that methylates G518. We show that mistranslation occurs less in the ΔgidB mutant only in the construct bearing a lesion in the wobble position compared to H37Rv. Thus, the methylation of G518 allows mistranslation to occur at some level in order for translation to proceed smoothly and efficiently. We also explored the role of methylation at G518 in altering the susceptibility of M. tuberculosis to streptomycin (SM). Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), we confirmed that G518 is not methylated in the ΔgidB mutant. Furthermore, isothermal titration calorimetry experiments performed on 70S ribosomes purified from wild-type and ΔgidB mutant strains showed that methylation significantly enhances SM binding. These results provide a mechanistic explanation for the low-level, SM-resistant phenotype observed in M. tuberculosis strains that contain a gidB mutation.


Assuntos
Proteínas de Bactérias/metabolismo , Metiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , RNA Ribossômico 16S/genética , Proteínas de Bactérias/genética , Metilação de DNA/genética , Espectrometria de Massas , Metiltransferases/genética , Estrutura Secundária de Proteína
16.
mBio ; 14(1): e0295222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688640

RESUMO

For model bacteria, genetic drug resistance usually arises from antibiotic-tolerant subpopulations, but whether this is true for the globally important pathogen Mycobacterium tuberculosis-the cause of tuberculosis-is not known. Here, we discuss a recent article by Sebastian et al. (J. Sebastian, A. Thomas, C. Levine, R. Shrestha, et al., mBio 14:e0279522, 2023, 10.1128/mbio.02795-22) which leverages a robotic transwell microtiter experimental system coupled with deep sequencing of a barcoded library of M. tuberculosis to answer this question for rifampicin resistance. The authors investigate two distinct forms of antibiotic-tolerant subpopulations-classical tolerance, characterized by prolonged minimum duration of killing, and "differentially detectable" (DD) bacilli that are viable but can be recovered only in liquid medium as opposed to plating. They demonstrate that, indeed, resistance arises preferentially from both rifampicin-tolerant subpopulations, though earlier in the DD population. Use of barcoded libraries and parallel culture systems shows promise in investigating phenotypes mediated by minority subpopulations of bacteria such as development of antibiotic resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Rifampina/farmacologia , Tuberculose/microbiologia , Antibacterianos , Farmacorresistência Bacteriana/genética , Antituberculosos/farmacologia
17.
NPJ Vaccines ; 8(1): 127, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626082

RESUMO

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (Mtb). Whilst a functional role for humoral immunity in Mtb protection remains poorly defined, previous studies have suggested that antibodies can contribute towards host defense. Thus, identifying the critical components in the antibody repertoires from immune, chronically exposed, healthy individuals represents an approach for identifying new determinants for natural protection. In this study, we performed a thorough analysis of the IgG/IgA memory B cell repertoire from occupationally exposed, immune volunteers. We detail the identification and selection of a human monoclonal antibody that exhibits protective activity in vivo and show that it targets a virulence factor LpqH. Intriguingly, protection in both human ex vivo and murine challenge experiments was isotype dependent, with most robust protection being mediated via IgG2 and IgA. These data have important implications for our understanding of natural mucosal immunity for Mtb and highlight a new target for future vaccine development.

18.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045287

RESUMO

Antibiotic tolerance in Mycobacterium tuberculosis leads to less effective bacterial killing, poor treatment responses and resistant emergence. There is limited understanding of antibiotic tolerance in clinical isolates of M. tuberculosis. Therefore, we investigated the rifampicin tolerance of M. tuberculosis isolates, with or without pre-existing isoniazid-resistance. In-vitro rifampicin survival fractions determined by minimum duration of killing assay in isoniazid susceptible (n=119) and resistant (n=84) M. tuberculosis isolates. Rifampicin tolerance was correlated with bacterial growth, rifampicin minimum inhibitory concentrations (MICs) and isoniazid-resistant mutations. The longitudinal isoniazid-resistant isolates were analyzed for rifampicin tolerance based on collection time from patients and associated emergence of genetic variants. The median duration of rifampicin exposure reducing the M. tuberculosis surviving fraction by 90% (minimum duration of killing-MDK90) increased from 1.23 (95%CI 1.11; 1.37) and 1.31 (95%CI 1.14; 1.48) to 2.55 (95%CI 2.04; 2.97) and 1.98 (95%CI 1.69; 2.56) days, for IS and IR respectively, during 15 to 60 days of incubation respectively. Increase in MDK90 time indicated the presence of fast and slow growing tolerant sub-populations. A range of 6 log10-fold survival fraction enabled classification of tolerance as low, medium or high and revealed isoniazid-resistance association with increased tolerance with faster growth (OR=2.68 for low vs. medium, OR=4.42 for low vs. high, P-trend=0.0003). The high tolerance in longitudinal isoniazid-resistant isolates was specific to those collected during rifampicin treatment in patients and associated with bacterial genetic microvariants. Our study identifies a range of rifampicin tolerance and reveals that isoniazid resistance is associated with higher tolerance with growth fitness. Furthermore, rifampicin treatment may select isoniazid-resistant isolate microvariants with higher rifampicin tolerance, with survival potential similar to multi-drug resistant isolates. These findings suggest that isoniazid-resistant tuberculosis needs to be evaluated for rifampicin tolerance or needs further improvement in treatment regimen. It is made available under a CC-BY 4.0 International license.

19.
Antimicrob Agents Chemother ; 56(1): 324-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22024828

RESUMO

The 1,5-diarylpyrrole derivative BM212 was previously shown to be active against multidrug-resistant clinical isolates and Mycobacterium tuberculosis residing within macrophages as well as against Mycobacterium avium and other atypical mycobacteria. To determine its mechanism of action, we identified the cellular target. Spontaneous Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Rv mutants that were resistant to BM212 were isolated. By the screening of genomic libraries and by whole-genome sequencing, we found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MmpL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family. Susceptibility was unaffected by the efflux pump inhibitors reserpine, carbonylcyanide m-chlorophenylhydrazone, and verapamil. Uptake/efflux experiments with [(14)C]BM212 demonstrated that resistance is not driven by the efflux of BM212. Together, these data strongly suggest that the MmpL3 protein is the cellular target of BM212.


Assuntos
Antituberculosos/farmacologia , Genoma Bacteriano , Proteínas de Membrana Transportadoras/genética , Mycobacterium bovis/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Piperazinas/farmacologia , Pirróis/farmacologia , Animais , Radioisótopos de Carbono , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Bovinos , Análise Mutacional de DNA , Farmacorresistência Bacteriana Múltipla , Biblioteca Genômica , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Reserpina/farmacologia , Verapamil/farmacologia
20.
Front Immunol ; 13: 878471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812462

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis is the world's deadliest bacterial infection, resulting in more than 1.4 million deaths annually. The emergence of drug-resistance to first-line antibiotic therapy poses a threat to successful treatment, and novel therapeutic options are required, particularly for drug-resistant tuberculosis. One modality emerging for TB treatment is therapeutic vaccination. As opposed to preventative vaccination - the aim of which is to prevent getting infected by M. tuberculosis or developing active tuberculosis, the purpose of therapeutic vaccination is as adjunctive treatment of TB or to prevent relapse following cure. Several candidate therapeutic vaccines, using killed whole-cell or live attenuated mycobacteria, mycobacterial fragments and viral vectored vaccines are in current clinical trials. Other modes of passive immunization, including monoclonal antibodies directed against M. tuberculosis antigens are in various pre-clinical stages of development. Here, we will discuss these various therapeutics and their proposed mechanisms of action. Although the full clinical utility of therapeutic vaccination for the treatment of tuberculosis is yet to be established, they hold potential as useful adjunct therapies.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Vacina BCG , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/uso terapêutico , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA