Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Chemistry ; 30(28): e202400690, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38471074

RESUMO

Droplet formation via liquid-liquid phase separation is thought to be involved in the regulation of various biological processes, including enzymatic reactions. We investigated a glycolytic enzymatic reaction, the conversion of glucose-6-phosphate to 6-phospho-D-glucono-1,5-lactone with concomitant reduction of NADP+ to NADPH both in the absence and presence of dynamically controlled liquid droplet formation. Here, the nucleotide serves as substrate as well as the scaffold required for the formation of liquid droplets. To further expand the process parameter space, temperature and pressure dependent measurements were performed. Incorporation of the reactants in the liquid droplet phase led to a boost in enzymatic activity, which was most pronounced at medium-high pressures. The crowded environment of the droplet phase induced a marked increase of the affinity of the enzyme and substrate. An increase in turnover number in the droplet phase at high pressure contributed to a further strong increase in catalytic efficiency. Enzyme systems that are dynamically coupled to liquid condensate formation may be the key to deciphering many biochemical reactions. Expanding the process parameter space by adjusting temperature and pressure conditions can be a means to further increase the efficiency of industrial enzyme utilization and help uncover regulatory mechanisms adopted by extremophiles.


Assuntos
Glucosefosfato Desidrogenase , Pressão , Ativação Enzimática , Gluconatos/metabolismo , Gluconatos/química , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/química , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/química , Cinética , Lactonas/química , Lactonas/metabolismo , NADP/metabolismo , NADP/química , Temperatura
2.
Biophys Chem ; 308: 107217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490110

RESUMO

Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]­hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]­hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Metaloproteínas , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Prótons , Catálise , Hidrogênio/química , Hidrogênio/metabolismo
3.
J Phys Chem B ; 128(28): 6838-6852, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38960927

RESUMO

One of the routes for adaptation to extreme environments is via remodeling of cell membrane structure, composition, and biophysical properties rendering a functional membrane. Collective studies suggest some form of membrane feedback in mycobacterial species that harbor complex lipids within the outer and inner cell wall layers. Here, we study the homeostatic membrane landscape of mycobacteria in response to high hydrostatic pressure and temperature triggers using high pressure fluorescence, mass and infrared spectroscopies, NMR, SAXS, and molecular dynamics simulations. Our findings reveal that mycobacterial membrane possesses unique and lipid-specific pressure-induced signatures that attenuate progression to highly ordered phases. Both inner and outer membrane layers exhibit phase coexistence of nearly identical lipid phases keeping residual fluidity over a wide range of temperature and pressure, but with different sensitivities. Lipidomic analysis of bacteria grown under pressure revealed lipidome remodeling in terms of chain length, unsaturation, and specific long-chained characteristic mycobacterial lipids, rendering a fluid bacterial membrane. These findings could help understand how bacteria may adapt to a broad spectrum of harsh environments by modulating their lipidome to select lipids that enable the maintenance of a fluid functional cell envelope.


Assuntos
Membrana Celular , Fluidez de Membrana , Simulação de Dinâmica Molecular , Membrana Celular/química , Membrana Celular/metabolismo , Temperatura , Parede Celular/metabolismo , Parede Celular/química , Adaptação Fisiológica , Pressão Hidrostática , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA