Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Cochrane Database Syst Rev ; 1: CD006207, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715243

RESUMO

BACKGROUND: Viral epidemics or pandemics of acute respiratory infections (ARIs) pose a global threat. Examples are influenza (H1N1) caused by the H1N1pdm09 virus in 2009, severe acute respiratory syndrome (SARS) in 2003, and coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in 2019. Antiviral drugs and vaccines may be insufficient to prevent their spread. This is an update of a Cochrane Review last published in 2020. We include results from studies from the current COVID-19 pandemic. OBJECTIVES: To assess the effectiveness of physical interventions to interrupt or reduce the spread of acute respiratory viruses. SEARCH METHODS: We searched CENTRAL, PubMed, Embase, CINAHL, and two trials registers in October 2022, with backwards and forwards citation analysis on the new studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cluster-RCTs investigating physical interventions (screening at entry ports, isolation, quarantine, physical distancing, personal protection, hand hygiene, face masks, glasses, and gargling) to prevent respiratory virus transmission.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. MAIN RESULTS: We included 11 new RCTs and cluster-RCTs (610,872 participants) in this update, bringing the total number of RCTs to 78. Six of the new trials were conducted during the COVID-19 pandemic; two from Mexico, and one each from Denmark, Bangladesh, England, and Norway. We identified four ongoing studies, of which one is completed, but unreported, evaluating masks concurrent with the COVID-19 pandemic. Many studies were conducted during non-epidemic influenza periods. Several were conducted during the 2009 H1N1 influenza pandemic, and others in epidemic influenza seasons up to 2016. Therefore, many studies were conducted in the context of lower respiratory viral circulation and transmission compared to COVID-19. The included studies were conducted in heterogeneous settings, ranging from suburban schools to hospital wards in high-income countries; crowded inner city settings in low-income countries; and an immigrant neighbourhood in a high-income country. Adherence with interventions was low in many studies. The risk of bias for the RCTs and cluster-RCTs was mostly high or unclear. Medical/surgical masks compared to no masks We included 12 trials (10 cluster-RCTs) comparing medical/surgical masks versus no masks to prevent the spread of viral respiratory illness (two trials with healthcare workers and 10 in the community). Wearing masks in the community probably makes little or no difference to the outcome of influenza-like illness (ILI)/COVID-19 like illness compared to not wearing masks (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.84 to 1.09; 9 trials, 276,917 participants; moderate-certainty evidence. Wearing masks in the community probably makes little or no difference to the outcome of laboratory-confirmed influenza/SARS-CoV-2 compared to not wearing masks (RR 1.01, 95% CI 0.72 to 1.42; 6 trials, 13,919 participants; moderate-certainty evidence). Harms were rarely measured and poorly reported (very low-certainty evidence). N95/P2 respirators compared to medical/surgical masks We pooled trials comparing N95/P2 respirators with medical/surgical masks (four in healthcare settings and one in a household setting). We are very uncertain on the effects of N95/P2 respirators compared with medical/surgical masks on the outcome of clinical respiratory illness (RR 0.70, 95% CI 0.45 to 1.10; 3 trials, 7779 participants; very low-certainty evidence). N95/P2 respirators compared with medical/surgical masks may be effective for ILI (RR 0.82, 95% CI 0.66 to 1.03; 5 trials, 8407 participants; low-certainty evidence). Evidence is limited by imprecision and heterogeneity for these subjective outcomes. The use of a N95/P2 respirators compared to medical/surgical masks probably makes little or no difference for the objective and more precise outcome of laboratory-confirmed influenza infection (RR 1.10, 95% CI 0.90 to 1.34; 5 trials, 8407 participants; moderate-certainty evidence). Restricting pooling to healthcare workers made no difference to the overall findings. Harms were poorly measured and reported, but discomfort wearing medical/surgical masks or N95/P2 respirators was mentioned in several studies (very low-certainty evidence).  One previously reported ongoing RCT has now been published and observed that medical/surgical masks were non-inferior to N95 respirators in a large study of 1009 healthcare workers in four countries providing direct care to COVID-19 patients.  Hand hygiene compared to control Nineteen trials compared hand hygiene interventions with controls with sufficient data to include in meta-analyses. Settings included schools, childcare centres and homes. Comparing hand hygiene interventions with controls (i.e. no intervention), there was a 14% relative reduction in the number of people with ARIs in the hand hygiene group (RR 0.86, 95% CI 0.81 to 0.90; 9 trials, 52,105 participants; moderate-certainty evidence), suggesting a probable benefit. In absolute terms this benefit would result in a reduction from 380 events per 1000 people to 327 per 1000 people (95% CI 308 to 342). When considering the more strictly defined outcomes of ILI and laboratory-confirmed influenza, the estimates of effect for ILI (RR 0.94, 95% CI 0.81 to 1.09; 11 trials, 34,503 participants; low-certainty evidence), and laboratory-confirmed influenza (RR 0.91, 95% CI 0.63 to 1.30; 8 trials, 8332 participants; low-certainty evidence), suggest the intervention made little or no difference. We pooled 19 trials (71, 210 participants) for the composite outcome of ARI or ILI or influenza, with each study only contributing once and the most comprehensive outcome reported. Pooled data showed that hand hygiene may be beneficial with an 11% relative reduction of respiratory illness (RR 0.89, 95% CI 0.83 to 0.94; low-certainty evidence), but with high heterogeneity. In absolute terms this benefit would result in a reduction from 200 events per 1000 people to 178 per 1000 people (95% CI 166 to 188). Few trials measured and reported harms (very low-certainty evidence). We found no RCTs on gowns and gloves, face shields, or screening at entry ports. AUTHORS' CONCLUSIONS: The high risk of bias in the trials, variation in outcome measurement, and relatively low adherence with the interventions during the studies hampers drawing firm conclusions. There were additional RCTs during the pandemic related to physical interventions but a relative paucity given the importance of the question of masking and its relative effectiveness and the concomitant measures of mask adherence which would be highly relevant to the measurement of effectiveness, especially in the elderly and in young children. There is uncertainty about the effects of face masks. The low to moderate certainty of evidence means our confidence in the effect estimate is limited, and that the true effect may be different from the observed estimate of the effect. The pooled results of RCTs did not show a clear reduction in respiratory viral infection with the use of medical/surgical masks. There were no clear differences between the use of medical/surgical masks compared with N95/P2 respirators in healthcare workers when used in routine care to reduce respiratory viral infection. Hand hygiene is likely to modestly reduce the burden of respiratory illness, and although this effect was also present when ILI and laboratory-confirmed influenza were analysed separately, it was not found to be a significant difference for the latter two outcomes. Harms associated with physical interventions were under-investigated. There is a need for large, well-designed RCTs addressing the effectiveness of many of these interventions in multiple settings and populations, as well as the impact of adherence on effectiveness, especially in those most at risk of ARIs.


Assuntos
Controle de Doenças Transmissíveis , Infecções Respiratórias , Idoso , Pré-Escolar , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , SARS-CoV-2 , Ensaios Clínicos Controlados Aleatórios como Assunto , Vírus da Influenza A Subtipo H1N1 , Controle de Doenças Transmissíveis/métodos , Saúde Global/estatística & dados numéricos
2.
Clin Infect Dis ; 73(11): e3884-e3899, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33270107

RESUMO

BACKGROUND: We aimed to review the evidence from studies relating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) culture with the results of reverse-transcription polymerase chain reaction (RT-PCR) and other variables that may influence the interpretation of the test, such as time from symptom onset. METHODS: We searched LitCovid, medRxiv, Google Scholar, and the World Health Organization coronavirus disease 2019 (COVID-19) database for COVID-19 up to 10 September 2020. We included studies attempting to culture or observe SARS-CoV-2 in specimens with RT-PCR positivity. Studies were dual-extracted and the data summarized narratively by specimen type. Where necessary, we contacted corresponding authors of included papers for additional information. We assessed quality using a modified Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2) risk-of-bias tool. RESULTS: We included 29 studies reporting attempts at culturing, or observing tissue infection by, SARS-CoV-2 in sputum, nasopharyngeal or oropharyngeal, urine, stool, blood, and environmental specimens. The quality of the studies was moderate with lack of standardized reporting. The data suggest a relationship between the time from onset of symptom to the timing of the specimen test, cycle threshold (Ct), and symptom severity. Twelve studies reported that Ct values were significantly lower and log copies higher in specimens producing live virus culture. Two studies reported that the odds of live virus culture were reduced by approximately 33% for every 1-unit increase in Ct. Six of 8 studies reported detectable RNA for >14 days, but infectious potential declined after day 8 even among cases with ongoing high viral loads. Four studies reported viral culture from stool specimens. CONCLUSIONS: Complete live viruses are necessary for transmission, not the fragments identified by PCR. Prospective routine testing of reference and culture specimens and their relationship to symptoms, signs, and patient co-factors should be used to define the reliability of PCR for assessing infectious potential. Those with high Ct are unlikely to have infectious potential.


Assuntos
COVID-19 , Humanos , Estudos Prospectivos , RNA Viral , Reprodutibilidade dos Testes , SARS-CoV-2 , Testes Sorológicos
3.
Cochrane Database Syst Rev ; 11: CD006207, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215698

RESUMO

BACKGROUND: Viral epidemics or pandemics of acute respiratory infections (ARIs) pose a global threat. Examples are influenza (H1N1) caused by the H1N1pdm09 virus in 2009, severe acute respiratory syndrome (SARS) in 2003, and coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in 2019. Antiviral drugs and vaccines may be insufficient to prevent their spread. This is an update of a Cochrane Review published in 2007, 2009, 2010, and 2011. The evidence summarised in this review does not include results from studies from the current COVID-19 pandemic. OBJECTIVES: To assess the effectiveness of physical interventions to interrupt or reduce the spread of acute respiratory viruses. SEARCH METHODS: We searched CENTRAL, PubMed, Embase, CINAHL on 1 April 2020. We searched ClinicalTrials.gov, and the WHO ICTRP on 16 March 2020. We conducted a backwards and forwards citation analysis on the newly included studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cluster-RCTs of trials investigating physical interventions (screening at entry ports, isolation, quarantine, physical distancing, personal protection, hand hygiene, face masks, and gargling) to prevent respiratory virus transmission. In previous versions of this review we also included observational studies. However, for this update, there were sufficient RCTs to address our study aims.   DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We used GRADE to assess the certainty of the evidence. Three pairs of review authors independently extracted data using a standard template applied in previous versions of this review, but which was revised to reflect our focus on RCTs and cluster-RCTs for this update. We did not contact trialists for missing data due to the urgency in completing the review. We extracted data on adverse events (harms) associated with the interventions. MAIN RESULTS: We included 44 new RCTs and cluster-RCTs in this update, bringing the total number of randomised trials to 67. There were no included studies conducted during the COVID-19 pandemic. Six ongoing studies were identified, of which three evaluating masks are being conducted concurrent with the COVID pandemic, and one is completed. Many studies were conducted during non-epidemic influenza periods, but several studies were conducted during the global H1N1 influenza pandemic in 2009, and others in epidemic influenza seasons up to 2016. Thus, studies were conducted in the context of lower respiratory viral circulation and transmission compared to COVID-19. The included studies were conducted in heterogeneous settings, ranging from suburban schools to hospital wards in high-income countries; crowded inner city settings in low-income countries; and an immigrant neighbourhood in a high-income country. Compliance with interventions was low in many studies. The risk of bias for the RCTs and cluster-RCTs was mostly high or unclear. Medical/surgical masks compared to no masks We included nine trials (of which eight were cluster-RCTs) comparing medical/surgical masks versus no masks to prevent the spread of viral respiratory illness (two trials with healthcare workers and seven in the community). There is low certainty evidence from nine trials (3507 participants) that wearing a mask may make little or no difference to the outcome of influenza-like illness (ILI) compared to not wearing a mask (risk ratio (RR) 0.99, 95% confidence interval (CI) 0.82 to 1.18. There is moderate certainty evidence that wearing a mask probably makes little or no difference to the outcome of laboratory-confirmed influenza compared to not wearing a mask (RR 0.91, 95% CI 0.66 to 1.26; 6 trials; 3005 participants). Harms were rarely measured and poorly reported. Two studies during COVID-19 plan to recruit a total of 72,000 people. One evaluates medical/surgical masks (N = 6000) (published Annals of Internal Medicine, 18 Nov 2020), and one evaluates cloth masks (N = 66,000). N95/P2 respirators compared to medical/surgical masks We pooled trials comparing N95/P2 respirators with medical/surgical masks (four in healthcare settings and one in a household setting). There is uncertainty over the effects of N95/P2 respirators when compared with medical/surgical masks on the outcomes of clinical respiratory illness (RR 0.70, 95% CI 0.45 to 1.10; very low-certainty evidence; 3 trials; 7779 participants) and ILI (RR 0.82, 95% CI 0.66 to 1.03; low-certainty evidence; 5 trials; 8407 participants). The evidence is limited by imprecision and heterogeneity for these subjective outcomes. The use of a N95/P2 respirator compared to a medical/surgical mask probably makes little or no difference for the objective and more precise outcome of laboratory-confirmed influenza infection (RR 1.10, 95% CI 0.90 to 1.34; moderate-certainty evidence; 5 trials; 8407 participants). Restricting the pooling to healthcare workers made no difference to the overall findings. Harms were poorly measured and reported, but discomfort wearing medical/surgical masks or N95/P2 respirators was mentioned in several studies. One ongoing study recruiting 576 people compares N95/P2 respirators with medical surgical masks for healthcare workers during COVID-19. Hand hygiene compared to control Settings included schools, childcare centres, homes, and offices. In a comparison of hand hygiene interventions with control (no intervention), there was a 16% relative reduction in the number of people with ARIs in the hand hygiene group (RR 0.84, 95% CI 0.82 to 0.86; 7 trials; 44,129 participants; moderate-certainty evidence), suggesting a probable benefit. When considering the more strictly defined outcomes of ILI and laboratory-confirmed influenza, the estimates of effect for ILI (RR 0.98, 95% CI 0.85 to 1.13; 10 trials; 32,641 participants; low-certainty evidence) and laboratory-confirmed influenza (RR 0.91, 95% CI 0.63 to 1.30; 8 trials; 8332 participants; low-certainty evidence) suggest the intervention made little or no difference. We pooled all 16 trials (61,372 participants) for the composite outcome of ARI or ILI or influenza, with each study only contributing once and the most comprehensive outcome reported. The pooled data showed that hand hygiene may offer a benefit with an 11% relative reduction of respiratory illness (RR 0.89, 95% CI 0.84 to 0.95; low-certainty evidence), but with high heterogeneity. Few trials measured and reported harms. There are two ongoing studies of handwashing interventions in 395 children outside of COVID-19. We identified one RCT on quarantine/physical distancing. Company employees in Japan were asked to stay at home if household members had ILI symptoms. Overall fewer people in the intervention group contracted influenza compared with workers in the control group (2.75% versus 3.18%; hazard ratio 0.80, 95% CI 0.66 to 0.97). However, those who stayed at home with their infected family members were 2.17 times more likely to be infected. We found no RCTs on eye protection, gowns and gloves, or screening at entry ports. AUTHORS' CONCLUSIONS: The high risk of bias in the trials, variation in outcome measurement, and relatively low compliance with the interventions during the studies hamper drawing firm conclusions and generalising the findings to the current COVID-19 pandemic. There is uncertainty about the effects of face masks. The low-moderate certainty of the evidence means our confidence in the effect estimate is limited, and that the true effect may be different from the observed estimate of the effect. The pooled results of randomised trials did not show a clear reduction in respiratory viral infection with the use of medical/surgical masks during seasonal influenza. There were no clear differences between the use of medical/surgical masks compared with N95/P2 respirators in healthcare workers when used in routine care to reduce respiratory viral infection. Hand hygiene is likely to modestly reduce the burden of respiratory illness. Harms associated with physical interventions were under-investigated. There is a need for large, well-designed RCTs addressing the effectiveness of many of these interventions in multiple settings and populations, especially in those most at risk of ARIs.


Assuntos
Higiene das Mãos , Máscaras , Infecções Respiratórias/prevenção & controle , Viroses/prevenção & controle , Eliminação de Partículas Virais , Viés , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Epidemias , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/transmissão , Infecções Respiratórias/virologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Viroses/epidemiologia , Viroses/transmissão
4.
Cochrane Database Syst Rev ; 2: CD004879, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388195

RESUMO

BACKGROUND: The consequences of influenza in children and adults are mainly absenteeism from school and work. However, the risk of complications is greatest in children and people over 65 years of age. This is an update of a review published in 2011. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated because of their lack of influence on the review conclusions. OBJECTIVES: To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in healthy children. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 12), which includes the Cochrane Acute Respiratory Infections Group Specialised Register, MEDLINE (1966 to 31 December 2016), Embase (1974 to 31 December 2016), WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017), and ClinicalTrials.gov (1 July 2017). SELECTION CRITERIA: Randomised controlled trials comparing influenza vaccines with placebo or no intervention in naturally occurring influenza in healthy children under 16 years. Previous versions of this review included 19 cohort and 11 case-control studies. We are no longer updating the searches for these study designs but have retained the observational studies for historical purposes. DATA COLLECTION AND ANALYSIS: Review authors independently assessed risk of bias and extracted data. We used GRADE to rate the certainty of evidence for the key outcomes of influenza, influenza-like illness (ILI), complications (hospitalisation, ear infection), and adverse events. Due to variation in control group risks for influenza and ILI, absolute effects are reported as the median control group risk, and numbers needed to vaccinate (NNVs) are reported accordingly. For other outcomes aggregate control group risks are used. MAIN RESULTS: We included 41 clinical trials (> 200,000 children). Most of the studies were conducted in children over the age of two and compared live attenuated or inactivated vaccines with placebo or no vaccine. Studies were conducted over single influenza seasons in the USA, Western Europe, Russia, and Bangladesh between 1984 and 2013. Restricting analyses to studies at low risk of bias showed that influenza and otitis media were the only outcomes where the impact of bias was negligible. Variability in study design and reporting impeded meta-analysis of harms outcomes.Live attenuated vaccinesCompared with placebo or do nothing, live attenuated influenza vaccines probably reduce the risk of influenza infection in children aged 3 to 16 years from 18% to 4% (risk ratio (RR) 0.22, 95% confidence interval (CI) 0.11 to 0.41; 7718 children; moderate-certainty evidence), and they may reduce ILI by a smaller degree, from 17% to 12% (RR 0.69, 95% CI 0.60 to 0.80; 124,606 children; low-certainty evidence). Seven children would need to be vaccinated to prevent one case of influenza, and 20 children would need to be vaccinated to prevent one child experiencing an ILI. Acute otitis media is probably similar following vaccine or placebo during seasonal influenza, but this result comes from a single study with particularly high rates of acute otitis media (RR 0.98, 95% CI 0.95 to 1.01; moderate-certainty evidence). There was insufficient information available to determine the effect of vaccines on school absenteeism due to very low-certainty evidence from one study. Vaccinating children may lead to fewer parents taking time off work, although the CI includes no effect (RR 0.69, 95% CI 0.46 to 1.03; low-certainty evidence). Data on the most serious consequences of influenza complications leading to hospitalisation were not available. Data from four studies measuring fever following vaccination varied considerably, from 0.16% to 15% in children who had live vaccines, while in the placebo groups the proportions ranged from 0.71% to 22% (very low-certainty evidence). Data on nausea were not reported.Inactivated vaccinesCompared with placebo or no vaccination, inactivated vaccines reduce the risk of influenza in children aged 2 to 16 years from 30% to 11% (RR 0.36, 95% CI 0.28 to 0.48; 1628 children; high-certainty evidence), and they probably reduce ILI from 28% to 20% (RR 0.72, 95% CI 0.65 to 0.79; 19,044 children; moderate-certainty evidence). Five children would need to be vaccinated to prevent one case of influenza, and 12 children would need to be vaccinated to avoid one case of ILI. The risk of otitis media is probably similar between vaccinated children and unvaccinated children (31% versus 27%), although the CI does not exclude a meaningful increase in otitis media following vaccination (RR 1.15, 95% CI 0.95 to 1.40; 884 participants; moderate-certainty evidence). There was insufficient information available to determine the effect of vaccines on school absenteeism due to very low-certainty evidence from one study. We identified no data on parental working time lost, hospitalisation, fever, or nausea.We found limited evidence on secondary cases, requirement for treatment of lower respiratory tract disease, and drug prescriptions. One brand of monovalent pandemic vaccine was associated with a sudden loss of muscle tone triggered by the experience of an intense emotion (cataplexy) and a sleep disorder (narcolepsy) in children. Evidence of serious harms (such as febrile fits) was sparse. AUTHORS' CONCLUSIONS: In children aged between 3 and 16 years, live influenza vaccines probably reduce influenza (moderate-certainty evidence) and may reduce ILI (low-certainty evidence) over a single influenza season. In this population inactivated vaccines also reduce influenza (high-certainty evidence) and may reduce ILI (low-certainty evidence). For both vaccine types, the absolute reduction in influenza and ILI varied considerably across the study populations, making it difficult to predict how these findings translate to different settings. We found very few randomised controlled trials in children under two years of age. Adverse event data were not well described in the available studies. Standardised approaches to the definition, ascertainment, and reporting of adverse events are needed. Identification of all global cases of potential harms is beyond the scope of this review.


Assuntos
Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Conflito de Interesses , Humanos , Lactente , Números Necessários para Tratar , Otite Média/diagnóstico , Otite Média/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Apoio à Pesquisa como Assunto , Vacinas Atenuadas/uso terapêutico , Vacinas de Produtos Inativados/uso terapêutico
5.
Cochrane Database Syst Rev ; 2: CD001269, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388196

RESUMO

BACKGROUND: The consequences of influenza in adults are mainly time off work. Vaccination of pregnant women is recommended internationally. This is an update of a review published in 2014. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated due to their lack of influence on the review conclusions. OBJECTIVES: To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in healthy adults, including pregnant women. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 12), MEDLINE (January 1966 to 31 December 2016), Embase (1990 to 31 December 2016), the WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017), and ClinicalTrials.gov (1 July 2017), as well as checking the bibliographies of retrieved articles. SELECTION CRITERIA: Randomised controlled trials (RCTs) or quasi-RCTs comparing influenza vaccines with placebo or no intervention in naturally occurring influenza in healthy individuals aged 16 to 65 years. Previous versions of this review included observational comparative studies assessing serious and rare harms cohort and case-control studies. Due to the uncertain quality of observational (i.e. non-randomised) studies and their lack of influence on the review conclusions, we decided to update only randomised evidence. The searches for observational comparative studies are no longer updated. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. We rated certainty of evidence for key outcomes (influenza, influenza-like illness (ILI), hospitalisation, and adverse effects) using GRADE. MAIN RESULTS: We included 52 clinical trials of over 80,000 people assessing the safety and effectiveness of influenza vaccines. We have presented findings from 25 studies comparing inactivated parenteral influenza vaccine against placebo or do-nothing control groups as the most relevant to decision-making. The studies were conducted over single influenza seasons in North America, South America, and Europe between 1969 and 2009. We did not consider studies at high risk of bias to influence the results of our outcomes except for hospitalisation.Inactivated influenza vaccines probably reduce influenza in healthy adults from 2.3% without vaccination to 0.9% (risk ratio (RR) 0.41, 95% confidence interval (CI) 0.36 to 0.47; 71,221 participants; moderate-certainty evidence), and they probably reduce ILI from 21.5% to 18.1% (RR 0.84, 95% CI 0.75 to 0.95; 25,795 participants; moderate-certainty evidence; 71 healthy adults need to be vaccinated to prevent one of them experiencing influenza, and 29 healthy adults need to be vaccinated to prevent one of them experiencing an ILI). The difference between the two number needed to vaccinate (NNV) values depends on the different incidence of ILI and confirmed influenza among the study populations. Vaccination may lead to a small reduction in the risk of hospitalisation in healthy adults, from 14.7% to 14.1%, but the CI is wide and does not rule out a large benefit (RR 0.96, 95% CI 0.85 to 1.08; 11,924 participants; low-certainty evidence). Vaccines may lead to little or no small reduction in days off work (-0.04 days, 95% CI -0.14 days to 0.06; low-certainty evidence). Inactivated vaccines cause an increase in fever from 1.5% to 2.3%.We identified one RCT and one controlled clinical trial assessing the effects of vaccination in pregnant women. The efficacy of inactivated vaccine containing pH1N1 against influenza was 50% (95% CI 14% to 71%) in mothers (NNV 55), and 49% (95% CI 12% to 70%) in infants up to 24 weeks (NNV 56). No data were available on efficacy against seasonal influenza during pregnancy. Evidence from observational studies showed effectiveness of influenza vaccines against ILI in pregnant women to be 24% (95% CI 11% to 36%, NNV 94), and against influenza in newborns from vaccinated women to be 41% (95% CI 6% to 63%, NNV 27).Live aerosol vaccines have an overall effectiveness corresponding to an NNV of 46. The performance of one- or two-dose whole-virion 1968 to 1969 pandemic vaccines was higher (NNV 16) against ILI and (NNV 35) against influenza. There was limited impact on hospitalisations in the 1968 to 1969 pandemic (NNV 94). The administration of both seasonal and 2009 pandemic vaccines during pregnancy had no significant effect on abortion or neonatal death, but this was based on observational data sets. AUTHORS' CONCLUSIONS: Healthy adults who receive inactivated parenteral influenza vaccine rather than no vaccine probably experience less influenza, from just over 2% to just under 1% (moderate-certainty evidence). They also probably experience less ILI following vaccination, but the degree of benefit when expressed in absolute terms varied across different settings. Variation in protection against ILI may be due in part to inconsistent symptom classification. Certainty of evidence for the small reductions in hospitalisations and time off work is low. Protection against influenza and ILI in mothers and newborns was smaller than the effects seen in other populations considered in this review.Vaccines increase the risk of a number of adverse events, including a small increase in fever, but rates of nausea and vomiting are uncertain. The protective effect of vaccination in pregnant women and newborns is also very modest. We did not find any evidence of an association between influenza vaccination and serious adverse events in the comparative studies considered in this review. Fifteen included RCTs were industry funded (29%).


Assuntos
Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Absenteísmo , Adulto , Indústria Farmacêutica , Feminino , Nível de Saúde , Hospitalização/estatística & dados numéricos , Humanos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza/efeitos adversos , Influenza Humana/virologia , Masculino , Náusea/induzido quimicamente , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/virologia , Viés de Publicação , Apoio à Pesquisa como Assunto , Vômito/induzido quimicamente
6.
Cochrane Database Syst Rev ; 2: CD004876, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388197

RESUMO

BACKGROUND: The consequences of influenza in the elderly (those age 65 years or older) are complications, hospitalisations, and death. The primary goal of influenza vaccination in the elderly is to reduce the risk of death among people who are most vulnerable. This is an update of a review published in 2010. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated because of their lack of influence on the review conclusions. OBJECTIVES: To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in the elderly. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 11), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register; MEDLINE (1966 to 31 December 2016); Embase (1974 to 31 December 2016); Web of Science (1974 to 31 December 2016); CINAHL (1981 to 31 December 2016); LILACS (1982 to 31 December 2016); WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017); and ClinicalTrials.gov (1 July 2017). SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs assessing efficacy against influenza (laboratory-confirmed cases) or effectiveness against influenza-like illness (ILI) or safety. We considered any influenza vaccine given independently, in any dose, preparation, or time schedule, compared with placebo or with no intervention. Previous versions of this review included 67 cohort and case-control studies. The searches for these trial designs are no longer updated. DATA COLLECTION AND ANALYSIS: Review authors independently assessed risk of bias and extracted data. We rated the certainty of evidence with GRADE for the key outcomes of influenza, ILI, complications (hospitalisation, pneumonia), and adverse events. We have presented aggregate control group risks to illustrate the effect in absolute terms. We used them as the basis for calculating the number needed to vaccinate to prevent one case of each event for influenza and ILI outcomes. MAIN RESULTS: We identified eight RCTs (over 5000 participants), of which four assessed harms. The studies were conducted in community and residential care settings in Europe and the USA between 1965 and 2000. Risk of bias reduced our certainty in the findings for influenza and ILI, but not for other outcomes.Older adults receiving the influenza vaccine may experience less influenza over a single season compared with placebo, from 6% to 2.4% (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.27 to 0.66; low-certainty evidence). We rated the evidence as low certainty due to uncertainty over how influenza was diagnosed. Older adults probably experience less ILI compared with those who do not receive a vaccination over the course of a single influenza season (3.5% versus 6%; RR 0.59, 95% CI 0.47 to 0.73; moderate-certainty evidence). These results indicate that 30 people would need to be vaccinated to prevent one person experiencing influenza, and 42 would need to be vaccinated to prevent one person having an ILI.The study providing data for mortality and pneumonia was underpowered to detect differences in these outcomes. There were 3 deaths from 522 participants in the vaccination arm and 1 death from 177 participants in the placebo arm, providing very low-certainty evidence for the effect on mortality (RR 1.02, 95% CI 0.11 to 9.72). No cases of pneumonia occurred in one study that reported this outcome (very low-certainty evidence). No data on hospitalisations were reported. Confidence intervaIs around the effect of vaccines on fever and nausea were wide, and we do not have enough information about these harms in older people (fever: 1.6% with placebo compared with 2.5% after vaccination (RR 1.57, 0.92 to 2.71; moderate-certainty evidence)); nausea (2.4% with placebo compared with 4.2% after vaccination (RR 1.75, 95% CI 0.74 to 4.12; low-certainty evidence)). AUTHORS' CONCLUSIONS: Older adults receiving the influenza vaccine may have a lower risk of influenza (from 6% to 2.4%), and probably have a lower risk of ILI compared with those who do not receive a vaccination over the course of a single influenza season (from 6% to 3.5%). We are uncertain how big a difference these vaccines will make across different seasons. Very few deaths occurred, and no data on hospitalisation were reported. No cases of pneumonia occurred in one study that reported this outcome. We do not have enough information to assess harms relating to fever and nausea in this population.The evidence for a lower risk of influenza and ILI with vaccination is limited by biases in the design or conduct of the studies. Lack of detail regarding the methods used to confirm the diagnosis of influenza limits the applicability of this result. The available evidence relating to complications is of poor quality, insufficient, or old and provides no clear guidance for public health regarding the safety, efficacy, or effectiveness of influenza vaccines for people aged 65 years or older. Society should invest in research on a new generation of influenza vaccines for the elderly.


Assuntos
Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Idoso , Humanos , Vacinas contra Influenza/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinas de Produtos Inativados/administração & dosagem
10.
Cochrane Database Syst Rev ; (6): CD005187, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251461

RESUMO

BACKGROUND: A systematic review found that 3% of working adults who had received influenza vaccine and 5% of those who were unvaccinated had laboratory-proven influenza per season; in healthcare workers (HCWs) these percentages were 5% and 8% respectively. Healthcare workers may transmit influenza to patients. OBJECTIVES: To identify all randomised controlled trials (RCTs) and non-RCTs assessing the effects of vaccinating healthcare workers on the incidence of laboratory-proven influenza, pneumonia, death from pneumonia and admission to hospital for respiratory illness in those aged 60 years or older resident in long-term care institutions (LTCIs). SEARCH METHODS: We searched CENTRAL (2015, Issue 9), MEDLINE (1966 to October week 3, 2015), EMBASE (1974 to October 2015) and Web of Science (2006 to October 2015), but Biological Abstracts only from 1969 to March 2013 and Science Citation Index-Expanded from 1974 to March 2013 due to lack of institutional access in 2015. SELECTION CRITERIA: Randomised controlled trials (RCTs) and non-RCTs of influenza vaccination of healthcare workers caring for individuals aged 60 years or older in LTCIs and the incidence of laboratory-proven influenza and its complications (lower respiratory tract infection, or hospitalisation or death due to lower respiratory tract infection) in individuals aged 60 years or older in LTCIs. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data and assessed risk of bias. Effects on dichotomous outcomes were measured as risk differences (RDs) with 95% confidence intervals (CIs). We assessed the quality of evidence with GRADE. MAIN RESULTS: We identified four cluster-RCTs and one cohort study (n = 12,742) of influenza vaccination for HCWs caring for individuals ≥ 60 years in LTCIs. Four cluster RCTs (5896 residents) provided outcome data that addressed the objectives of our review. The studies were comparable in their study populations, intervention and outcome measures. The studies did not report adverse events. The principal sources of bias in the studies related to attrition, lack of blinding, contamination in the control groups and low rates of vaccination coverage in the intervention arms, leading us to downgrade the quality of evidence for all outcomes due to serious risk of bias.Offering influenza vaccination to HCWs based in long term care homes may have little or no effect on the number of residents who develop laboratory-proven influenza compared with those living in care homes where no vaccination is offered (RD 0 (95% CI -0.03 to 0.03), two studies with samples taken from 752 participants; low quality evidence). HCW vaccination probably leads to a reduction in lower respiratory tract infection in residents from 6% to 4% (RD -0.02 (95% CI -0.04 to 0.01), one study of 3400 people; moderate quality evidence). HCW vaccination programmes may have little or no effect on the number of residents admitted to hospital for respiratory illness (RD 0 (95% CI -0.02 to 0.02, one study of 1059 people; low quality evidence). We decided not to combine data on deaths from lower respiratory tract infection (two studies of 4459 people) or all cause deaths (four studies of 8468 people). The direction and size of difference in risk varied between the studies. We are uncertain as to the effect of vaccination on these outcomes due to the very low quality of evidence. Adjusted analyses, which took into account the cluster design, did not differ substantively from the pooled analysis with unadjusted data. AUTHORS' CONCLUSIONS: Our review findings have not identified conclusive evidence of benefit of HCW vaccination programmes on specific outcomes of laboratory-proven influenza, its complications (lower respiratory tract infection, hospitalisation or death due to lower respiratory tract illness), or all cause mortality in people over the age of 60 who live in care institutions. This review did not find information on co-interventions with healthcare worker vaccination: hand-washing, face masks, early detection of laboratory-proven influenza, quarantine, avoiding admissions, antivirals and asking healthcare workers with influenza or influenza-like illness (ILI) not to work. This review does not provide reasonable evidence to support the vaccination of healthcare workers to prevent influenza in those aged 60 years or older resident in LTCIs. High quality RCTs are required to avoid the risks of bias in methodology and conduct identified by this review and to test further these interventions in combination.


Assuntos
Pessoal de Saúde , Transmissão de Doença Infecciosa do Profissional para o Paciente/prevenção & controle , Vacinas contra Influenza/administração & dosagem , Influenza Humana/transmissão , Adulto , Idoso , Instituição de Longa Permanência para Idosos , Humanos , Influenza Humana/prevenção & controle , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinas de Produtos Inativados/administração & dosagem
12.
Lancet ; 383(9913): 257-66, 2014 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-24411650

RESUMO

The methods and results of health research are documented in study protocols, full study reports (detailing all analyses), journal reports, and participant-level datasets. However, protocols, full study reports, and participant-level datasets are rarely available, and journal reports are available for only half of all studies and are plagued by selective reporting of methods and results. Furthermore, information provided in study protocols and reports varies in quality and is often incomplete. When full information about studies is inaccessible, billions of dollars in investment are wasted, bias is introduced, and research and care of patients are detrimentally affected. To help to improve this situation at a systemic level, three main actions are warranted. First, academic institutions and funders should reward investigators who fully disseminate their research protocols, reports, and participant-level datasets. Second, standards for the content of protocols and full study reports and for data sharing practices should be rigorously developed and adopted for all types of health research. Finally, journals, funders, sponsors, research ethics committees, regulators, and legislators should endorse and enforce policies supporting study registration and wide availability of journal reports, full study reports, and participant-level datasets.


Assuntos
Pesquisa Biomédica/normas , Disseminação de Informação , Acesso à Informação , Pesquisa Biomédica/métodos , Ensaios Clínicos como Assunto/normas , Humanos , Publicações Periódicas como Assunto/normas , Viés de Publicação , Editoração/normas , Projetos de Pesquisa
14.
Cochrane Database Syst Rev ; (3): CD001269, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24623315

RESUMO

BACKGROUND: Different types of influenza vaccines are currently produced worldwide. Vaccination of pregnant women is recommended internationally, while healthy adults are targeted in North America. OBJECTIVES: To identify, retrieve and assess all studies evaluating the effects (efficacy, effectiveness and harm) of vaccines against influenza in healthy adults, including pregnant women. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 2), MEDLINE (January 1966 to May 2013) and EMBASE (1990 to May 2013). SELECTION CRITERIA: Randomised controlled trials (RCTs) or quasi-RCTs comparing influenza vaccines with placebo or no intervention in naturally occurring influenza in healthy individuals aged 16 to 65 years. We also included comparative studies assessing serious and rare harms. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: We included 90 reports containing 116 data sets; among these 69 were clinical trials of over 70,000 people, 27 were comparative cohort studies (about eight million people) and 20 were case-control studies (nearly 25,000 people). We retrieved 23 reports of the effectiveness and safety of vaccine administration in pregnant women (about 1.6 million mother-child couples).The overall effectiveness of parenteral inactivated vaccine against influenza-like illness (ILI) is limited, corresponding to a number needed to vaccinate (NNV) of 40 (95% confidence interval (CI) 26 to 128). The overall efficacy of inactivated vaccines in preventing confirmed influenza has a NNV of 71 (95% CI 64 to 80). The difference between these two values depends on the different incidence of ILI and confirmed influenza among the study populations: 15.6% of unvaccinated participants versus 9.9% of vaccinated participants developed ILI symptoms, whilst only 2.4% and 1.1%, respectively, developed laboratory-confirmed influenza.No RCTs assessing vaccination in pregnant women were found. The only evidence available comes from observational studies with modest methodological quality. On this basis, vaccination shows very limited effects: NNV 92 (95% CI 63 to 201) against ILI in pregnant women and NNV 27 (95% CI 18 to 185) against laboratory-confirmed influenza in newborns from vaccinated women.Live aerosol vaccines have an overall effectiveness corresponding to a NNV 46 (95% CI 29 to 115).The performance of one-dose or two-dose whole virion pandemic vaccines was higher, showing a NNV of 16 (95% CI 14 to 20) against ILI and a NNV of 35 (95% CI 33 to 47) against influenza, while a limited impact on hospitalisation was found (NNV 94, 95% CI 70 to 1022).Vaccination had a modest effect on time off work and had no effect on hospital admissions or complication rates. Inactivated vaccines caused local harms. No evidence of association with serious adverse events was found, but the harms evidence base was limited.The overall risk of bias in the included trials is unclear because it was not possible to assess the real impact of bias. AUTHORS' CONCLUSIONS: Influenza vaccines have a very modest effect in reducing influenza symptoms and working days lost in the general population, including pregnant women. No evidence of association between influenza vaccination and serious adverse events was found in the comparative studies considered in the review. This review includes 90 studies, 24 of which (26.7%) were funded totally or partially by industry. Out of the 48 RCTs, 17 were industry-funded (35.4%).


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Adulto , Indústria Farmacêutica , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Viés de Publicação , Apoio à Pesquisa como Assunto
15.
Cochrane Database Syst Rev ; (4): CD008965, 2014 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-24718923

RESUMO

BACKGROUND: Neuraminidase inhibitors (NIs) are stockpiled and recommended by public health agencies for treating and preventing seasonal and pandemic influenza. They are used clinically worldwide. OBJECTIVES: To describe the potential benefits and harms of NIs for influenza in all age groups by reviewing all clinical study reports of published and unpublished randomised, placebo-controlled trials and regulatory comments. SEARCH METHODS: We searched trial registries, electronic databases (to 22 July 2013) and regulatory archives, and corresponded with manufacturers to identify all trials. We also requested clinical study reports. We focused on the primary data sources of manufacturers but we checked that there were no published randomised controlled trials (RCTs) from non-manufacturer sources by running electronic searches in the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE (Ovid), EMBASE, Embase.com, PubMed (not MEDLINE), the Database of Reviews of Effects, the NHS Economic Evaluation Database and the Health Economic Evaluations Database. SELECTION CRITERIA: Randomised, placebo-controlled trials on adults and children with confirmed or suspected exposure to naturally occurring influenza. DATA COLLECTION AND ANALYSIS: We extracted clinical study reports and assessed risk of bias using purpose-built instruments. We analysed the effects of zanamivir and oseltamivir on time to first alleviation of symptoms, influenza outcomes, complications, hospitalisations and adverse events in the intention-to-treat (ITT) population. All trials were sponsored by the manufacturers. MAIN RESULTS: We obtained 107 clinical study reports from the European Medicines Agency (EMA), GlaxoSmithKline and Roche. We accessed comments by the US Food and Drug Administration (FDA), EMA and Japanese regulator. We included 53 trials in Stage 1 (a judgement of appropriate study design) and 46 in Stage 2 (formal analysis), including 20 oseltamivir (9623 participants) and 26 zanamivir trials (14,628 participants). Inadequate reporting put most of the zanamivir studies and half of the oseltamivir studies at a high risk of selection bias. There were inadequate measures in place to protect 11 studies of oseltamivir from performance bias due to non-identical presentation of placebo. Attrition bias was high across the oseltamivir studies and there was also evidence of selective reporting for both the zanamivir and oseltamivir studies. The placebo interventions in both sets of trials may have contained active substances. Time to first symptom alleviation. For the treatment of adults, oseltamivir reduced the time to first alleviation of symptoms by 16.8 hours (95% confidence interval (CI) 8.4 to 25.1 hours, P < 0.0001). This represents a reduction in the time to first alleviation of symptoms from 7 to 6.3 days. There was no effect in asthmatic children, but in otherwise healthy children there was (reduction by a mean difference of 29 hours, 95% CI 12 to 47 hours, P = 0.001). Zanamivir reduced the time to first alleviation of symptoms in adults by 0.60 days (95% CI 0.39 to 0.81 days, P < 0.00001), equating to a reduction in the mean duration of symptoms from 6.6 to 6.0 days. The effect in children was not significant. In subgroup analysis we found no evidence of a difference in treatment effect for zanamivir on time to first alleviation of symptoms in adults in the influenza-infected and non-influenza-infected subgroups (P = 0.53). Hospitalisations. Treatment of adults with oseltamivir had no significant effect on hospitalisations: risk difference (RD) 0.15% (95% CI -0.78 to 0.91). There was also no significant effect in children or in prophylaxis. Zanamivir hospitalisation data were unreported. Serious influenza complications or those leading to study withdrawal. In adult treatment trials, oseltamivir did not significantly reduce those complications classified as serious or those which led to study withdrawal (RD 0.07%, 95% CI -0.78 to 0.44), nor in child treatment trials; neither did zanamivir in the treatment of adults or in prophylaxis. There were insufficient events to compare this outcome for oseltamivir in prophylaxis or zanamivir in the treatment of children. Pneumonia. Oseltamivir significantly reduced self reported, investigator-mediated, unverified pneumonia (RD 1.00%, 95% CI 0.22 to 1.49); number needed to treat to benefit (NNTB) = 100 (95% CI 67 to 451) in the treated population. The effect was not significant in the five trials that used a more detailed diagnostic form for pneumonia. There were no definitions of pneumonia (or other complications) in any trial. No oseltamivir treatment studies reported effects on radiologically confirmed pneumonia. There was no significant effect on unverified pneumonia in children. There was no significant effect of zanamivir on either self reported or radiologically confirmed pneumonia. In prophylaxis, zanamivir significantly reduced the risk of self reported, investigator-mediated, unverified pneumonia in adults (RD 0.32%, 95% CI 0.09 to 0.41); NNTB = 311 (95% CI 244 to 1086), but not oseltamivir. Bronchitis, sinusitis and otitis media. Zanamivir significantly reduced the risk of bronchitis in adult treatment trials (RD 1.80%, 95% CI 0.65 to 2.80); NNTB = 56 (36 to 155), but not oseltamivir. Neither NI significantly reduced the risk of otitis media and sinusitis in both adults and children. Harms of treatment. Oseltamivir in the treatment of adults increased the risk of nausea (RD 3.66%, 95% CI 0.90 to 7.39); number needed to treat to harm (NNTH) = 28 (95% CI 14 to 112) and vomiting (RD 4.56%, 95% CI 2.39 to 7.58); NNTH = 22 (14 to 42). The proportion of participants with four-fold increases in antibody titre was significantly lower in the treated group compared to the control group (RR 0.92, 95% CI 0.86 to 0.97, I(2) statistic = 0%) (5% absolute difference between arms). Oseltamivir significantly decreased the risk of diarrhoea (RD 2.33%, 95% CI 0.14 to 3.81); NNTB = 43 (95% CI 27 to 709) and cardiac events (RD 0.68%, 95% CI 0.04 to 1.0); NNTB = 148 (101 to 2509) compared to placebo during the on-treatment period. There was a dose-response effect on psychiatric events in the two oseltamivir "pivotal" treatment trials, WV15670 and WV15671, at 150 mg (standard dose) and 300 mg daily (high dose) (P = 0.038). In the treatment of children, oseltamivir induced vomiting (RD 5.34%, 95% CI 1.75 to 10.29); NNTH = 19 (95% CI 10 to 57). There was a significantly lower proportion of children on oseltamivir with a four-fold increase in antibodies (RR 0.90, 95% CI 0.80 to 1.00, I(2) = 0%). Prophylaxis. In prophylaxis trials, oseltamivir and zanamivir reduced the risk of symptomatic influenza in individuals (oseltamivir: RD 3.05% (95% CI 1.83 to 3.88); NNTB = 33 (26 to 55); zanamivir: RD 1.98% (95% CI 0.98 to 2.54); NNTB = 51 (40 to 103)) and in households (oseltamivir: RD 13.6% (95% CI 9.52 to 15.47); NNTB = 7 (6 to 11); zanamivir: RD 14.84% (95% CI 12.18 to 16.55); NNTB = 7 (7 to 9)). There was no significant effect on asymptomatic influenza (oseltamivir: RR 1.14 (95% CI 0.39 to 3.33); zanamivir: RR 0.97 (95% CI 0.76 to 1.24)). Non-influenza, influenza-like illness could not be assessed due to data not being fully reported. In oseltamivir prophylaxis studies, psychiatric adverse events were increased in the combined on- and off-treatment periods (RD 1.06%, 95% CI 0.07 to 2.76); NNTH = 94 (95% CI 36 to 1538) in the study treatment population. Oseltamivir increased the risk of headaches whilst on treatment (RD 3.15%, 95% CI 0.88 to 5.78); NNTH = 32 (95% CI 18 to 115), renal events whilst on treatment (RD 0.67%, 95% CI -2.93 to 0.01); NNTH = 150 (NNTH 35 to NNTB > 1000) and nausea whilst on treatment (RD 4.15%, 95% CI 0.86 to 9.51); NNTH = 25 (95% CI 11 to 116). AUTHORS' CONCLUSIONS: Oseltamivir and zanamivir have small, non-specific effects on reducing the time to alleviation of influenza symptoms in adults, but not in asthmatic children. Using either drug as prophylaxis reduces the risk of developing symptomatic influenza. Treatment trials with oseltamivir or zanamivir do not settle the question of whether the complications of influenza (such as pneumonia) are reduced, because of a lack of diagnostic definitions. The use of oseltamivir increases the risk of adverse effects, such as nausea, vomiting, psychiatric effects and renal events in adults and vomiting in children. The lower bioavailability may explain the lower toxicity of zanamivir compared to oseltamivir. The balance between benefits and harms should be considered when making decisions about use of both NIs for either the prophylaxis or treatment of influenza. The influenza virus-specific mechanism of action proposed by the producers does not fit the clinical evidence.


Assuntos
Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico , Adulto , Antivirais/efeitos adversos , Criança , Avaliação de Medicamentos , Inibidores Enzimáticos/efeitos adversos , Europa (Continente) , Nível de Saúde , Humanos , Japão , Legislação de Medicamentos , Oseltamivir/efeitos adversos , Pneumonia/prevenção & controle , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Reino Unido , Estados Unidos , Zanamivir/efeitos adversos
16.
Int J Technol Assess Health Care ; 30(5): 536-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25747564

RESUMO

OBJECTIVES: The purpose of the European network for Health Technology Assessment (EUnetHTA) is to make HTA agencies collaborate sharing methods and tools thus avoiding duplication of evaluative efforts and allowing resource savings. From 2010 to 2012, the activities of the network were carried out through EUnetHTA Joint Action 1 and Work Package 4 Strand B aimed at producing two Core HTAs with two main objectives: to test the Web based Core model and the collaborative working models. Our objective in this article is to give an historical record of the Work Package activities highlighting what worked and what did not in the collaboration of researchers' groups coming from different agencies. METHODS: A retrospective description of all the steps for the joint production of the two Core HTAs is provided starting from the first step of selecting technologies of common interest. Primary researchers' views on the whole process have been collected through a semi-structured telephonic interview supported by a questionnaire. Coordinators views were gathered during internal meetings and validated. RESULTS: Majority of respondents thought topic selection procedure was not clear and well managed. About collaborative models, small groups were seen to enable more exchange, whatever the model. According to coordinators, loss of expertise and experience during the production process, different languages, and novelty of the Online Tool were main barriers. CONCLUSIONS: Lessons learned from this first experience in Joint Action 1 paved the path for the collaboration in Joint Action 2, as it allowed enhancements and changes in models of collaborations and coordination.


Assuntos
Bases de Dados Factuais/normas , Cooperação Internacional , Modelos Organizacionais , Avaliação da Tecnologia Biomédica/organização & administração , Europa (Continente) , Humanos , Internet , Entrevistas como Assunto , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Pesquisa , Estudos Retrospectivos , Inquéritos e Questionários
17.
Recenti Prog Med ; 105(5): 187-90, 2014 May.
Artigo em Italiano | MEDLINE | ID: mdl-24873941

RESUMO

For the past decade decision makers worldwide have endorsed the use of neuraminidase inhibitors. They spent billions of pounds stockpiling the two anti-influenza drugs oseltamivir and zanamivir from the mid-2000s as part of a global effort to be prepared for an influenza pandemic. When the H1N1 pandemic emerged in 2009 the drugs were rolled out around the globe for treatment and prevention of influenza and its complications. Under this spotlight, we were asked to conduct a systematic review for Cochrane to update evidence on their efficacy. What should have been a routine review got complicated as the validity of a key study that underpinned the evidence on efficacy was unclear. Our three and half year battle for data has resulted in the drug manufacturers providing us with full clinical study reports and unveiled a story in which no party has taken full responsibility for ensuring the validity of the evidence underlying its decisions. We hope that the publication of our systematic review of the trials, alongside all the source clinical study reports, will change the way such decisions are made.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico , Ensaios Clínicos como Assunto , Medicina Baseada em Evidências , Saúde Global , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Itália , Oseltamivir/efeitos adversos , Pandemias/prevenção & controle , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Zanamivir/efeitos adversos
18.
Cochrane Database Syst Rev ; (7): CD005187, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23881655

RESUMO

BACKGROUND: Healthcare workers' influenza rates are unknown but may be similar to those of the general public. Healthcare workers may transmit influenza to patients. OBJECTIVES: To identify all randomised controlled trials (RCTs) and non-RCTs assessing the effects of vaccinating healthcare workers on the incidence of laboratory-proven influenza, pneumonia, death from pneumonia and admission to hospital for respiratory illness in those aged 60 years or older resident in long-term care institutions (LTCIs). SEARCH METHODS: We searched CENTRAL 2013, Issue 2, MEDLINE (1966 to March week 3, 2013), EMBASE (1974 to March 2013), Biological Abstracts (1969 to March 2013), Science Citation Index-Expanded (1974 to March 2013) and Web of Science (2006 to March 2013). SELECTION CRITERIA: Randomised controlled trials (RCTs) and non-RCTs of influenza vaccination of healthcare workers caring for individuals aged 60 years or older in LTCIs and the incidence of laboratory-proven influenza and its complications (lower respiratory tract infection, or hospitalisation or death due to lower respiratory tract infection) in individuals aged 60 years or older in LTCIs. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data and assessed risk of bias. MAIN RESULTS: We identified four cluster-RCTs (C-RCTs) (n = 7558) and one cohort study (n = 12,742) of influenza vaccination for HCWs caring for individuals ≥ 60 years in LTCFs. Three RCTs (5896 participants) provided outcome data that met our criteria. These three studies were comparable in study populations, intervention and outcome measures. The studies did not report adverse events. The principal sources of bias in the studies related to attrition and blinding. The pooled risk difference (RD) from the three cluster-RCTs for laboratory-proven influenza was 0 (95% confidence interval (CI) -0.03 to 0.03) and for hospitalisation was RD 0 (95% CI -0.02 to 0.02). The estimated risk of death due to lower respiratory tract infection was also imprecise (RD -0.02, 95% CI -0.06 to 0.02) in individuals aged 60 years or older in LTCIs. Adjusted analyses which took into account the cluster design did not differ substantively from the pooled analysis with unadjusted data. AUTHORS' CONCLUSIONS: The results for specific outcomes: laboratory-proven influenza or its complications (lower respiratory tract infection, or hospitalisation or death due to lower respiratory tract illness) did not identify a benefit of healthcare worker vaccination on these key outcomes. This review did not find information on co-interventions with healthcare worker vaccination: hand-washing, face masks, early detection of laboratory-proven influenza, quarantine, avoiding admissions, antivirals and asking healthcare workers with influenza or influenza-like-illness (ILI) not to work. This review does not provide reasonable evidence to support the vaccination of healthcare workers to prevent influenza in those aged 60 years or older resident in LTCIs. High-quality RCTs are required to avoid the risks of bias in methodology and conduct identified by this review and to test further these interventions in combination.


Assuntos
Pessoal de Saúde , Transmissão de Doença Infecciosa do Profissional para o Paciente/prevenção & controle , Vacinas contra Influenza/administração & dosagem , Influenza Humana/transmissão , Adulto , Idoso , Instituição de Longa Permanência para Idosos , Humanos , Influenza Humana/prevenção & controle , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinas de Produtos Inativados/administração & dosagem
19.
Trop Med Infect Dis ; 8(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37235296

RESUMO

BACKGROUND: Treatments for COVID-19, including steroids, might exacerbate Strongyloides disease in patients with coinfection. We aimed to systematically review clinical and laboratory features of SARS-CoV-2 and Strongyloides coinfection, investigate possible interventions, assess outcomes, and identify research gaps requiring further attention. METHODS: We searched two electronic databases, LitCOVID and WHO, up to August 2022, including SARS-CoV-2 and Strongyloides coinfection studies. We adapted the World Health Organization-Uppsala Monitoring Centre (WHO-UMC) system for standardized case causality assessment to evaluate if using corticosteroids or other immunosuppressive drugs in COVID-19 patients determined acute manifestations of strongyloidiasis. RESULTS: We included 16 studies reporting 25 cases of Strongyloides and SARS-CoV-2 coinfection: 4 with hyperinfection syndrome; 2 with disseminated strongyloidiasis; 3 with cutaneous reactivation of strongyloidiasis; 3 with isolated digestive symptoms; and 2 with solely eosinophilia, without clinical manifestations. Eleven patients were asymptomatic regarding strongyloidiasis. Eosinopenia or normal eosinophil count was reported in 58.3% of patients with Strongyloides reactivation. Steroids were given to 18/21 (85.7%) cases. A total of 4 patients (19.1%) received tocilizumab and/or Anakirna in addition to steroids. Moreover, 2 patients (9.5%) did not receive any COVID-19 treatment. The causal relationship between Strongyloides reactivation and COVID-19 treatments was considered certain (4% of cases), probable (20% of patients), and possible (20% of patients). For 8% of cases, it was considered unlikely that COVID-19 treatment was associated with strongyloidiasis reactivations; the relationship between the Strongyloides infection and administration of COVID-19 treatment was unassessable/unclassifiable in 48% of cases. Of 13 assessable cases, 11 (84.6%) were considered to be causally associated with Strongyloides, ranging from certain to possible. CONCLUSIONS: Further research is needed to assess the frequency and risk of Strongyloides reactivation in SARS-CoV-2 infection. Our limited data using causality assessment supports recommendations that clinicians should screen and treat for Strongyloides infection in patients with coinfection who receive immunosuppressive COVID-19 therapies. In addition, the male gender and older age (over 50 years) may be predisposing factors for Strongyloides reactivation. Standardized guidelines should be developed for reporting future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA