Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 53(18): 4592-6, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24677281

RESUMO

A flexible metal-organic framework selectively sorbs para- (pX) over meta-xylene (mX) by synergic restructuring around pX coupled with generation of unused void space upon mX loading. The nature of the structural change suggests more generally that flexible structures which are initially mismatched in terms of fit and capacity to the preferred guest are strong candidates for effective molecular separations.

2.
Nat Commun ; 9(1): 2849, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030426

RESUMO

Supramolecular synthesis is a powerful strategy for assembling complex molecules, but to do this by targeted design is challenging. This is because multicomponent assembly reactions have the potential to form a wide variety of products. High-throughput screening can explore a broad synthetic space, but this is inefficient and inelegant when applied blindly. Here we fuse computation with robotic synthesis to create a hybrid discovery workflow for discovering new organic cage molecules, and by extension, other supramolecular systems. A total of 78 precursor combinations were investigated by computation and experiment, leading to 33 cages that were formed cleanly in one-pot syntheses. Comparison of calculations with experimental outcomes across this broad library shows that computation has the power to focus experiments, for example by identifying linkers that are less likely to be reliable for cage formation. Screening also led to the unplanned discovery of a new cage topology-doubly bridged, triply interlocked cage catenanes.

3.
Nanoscale ; 9(20): 6783-6790, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28489105

RESUMO

The control of solid state assembly for porous organic cages is more challenging than for extended frameworks, such as metal-organic frameworks. Chiral recognition is one approach to achieving this control. Here we investigate chiral analogues of cages that were previously studied as racemates. We show that chiral cages can be produced directly from chiral precursors or by separating racemic cages by co-crystallisation with a second chiral cage, opening up a route to producing chiral cages from achiral precursors. These chiral cages can be cocrystallized in a modular, 'isoreticular' fashion, thus modifying porosity, although some chiral pairings require a specific solvent to direct the crystal into the desired packing mode. Certain cages are shown to interconvert chirality in solution, and the steric factors governing this behavior are explored both by experiment and by computational modelling.

4.
Nat Chem ; 9(1): 17-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27995921

RESUMO

Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

5.
Chem Commun (Camb) ; 52(19): 3750-3, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26800518

RESUMO

The porosity of a glass formed by melt-quenching a metal-organic framework, has been characterized by positron annihilation lifetime spectroscopy. The results reveal porosity intermediate between the related open and dense crystalline frameworks ZIF-4 and ZIF-zni. A structural model for the glass was constructed using an amorphous polymerization algorithm, providing additional insight into the gas-inaccessible nature of porosity and the possible applications of hybrid glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA