Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Opt Express ; 26(15): 18842-18854, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114145

RESUMO

To achieve a feasible heat-assisted magnetic recording (HAMR) system, a near-field transducer (NFT) is necessary to strongly focus the optical field to a lateral region measuring tens of nanometres in size. An NFT must deliver sufficient power to the recording medium as well as maintain its structural integrity. The self-heating problem in the NFT causes materials failure that leads to the degradation of the hard disk drive performance. The literature reports NFT structures with physical sizes well below 1 micron which were found to be thermo-mechanically unstable at an elevated temperature. In this paper, we demonstrate an adiabatic NFT to address the central challenge of thermal engineering for a HAMR system. The NFT is formed by an isosceles triangular gold taper plasmonic waveguide with a length of 6 µm and a height of 50 nm. Our study shows that in the full optically and thermally optimized system, the NFT efficiently extracts the incident light from the waveguide core and can improve the shape of the heating source profile for data recording. The most important insight of the thermal performance is that the recording medium can be heated up to 866 K with an input power of 8.5 mW which is above the Curie temperature of the FePt film while maintaining the temperature in the NFT at 390 K without a heat spreader. A very good thermal efficiency of 5.91 is achieved also. The proposed structure is easily fabricated and can potentially reduce the NFT deformation at a high recording temperature making it suitable for practical HAMR application.

2.
Opt Lett ; 43(15): 3477-3480, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067689

RESUMO

A design process for creating integrated diffractive focusing elements for use in planar waveguides is presented. The elements consist of a linear array of holes etched into the core layer of a planar dielectric waveguide. A complete element is a few micrometers in size, while the individual holes are sub-micrometer. The focusing element was designed using analytical Mie theory. The performance of the complete 3D structure was then evaluated using 3D finite difference time domain (FDTD) method. A focal spot width of 227 nm (full width at half maximum) was predicted by 3D FDTD simulations with a peak intensity more than 10x the incident intensity and back-reflections lower than 1%. The focusing elements were fabricated using electron beam lithography and plasma etching. Fluorescence imaging was used to map the intensity in the waveguide core. The experimentally measured intensity maps were in good agreement with the simulations when the finite spatial resolution of the imaging system was taken into account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA