Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Nat Prod ; 87(2): 439-452, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38353658

RESUMO

Marine-derived Streptomyces have long been recognized as a source of novel, pharmaceutically relevant natural products. Among these bacteria, the MAR4 clade within the genus Streptomyces has been identified as metabolically rich, yielding over 93 different compounds to date. MAR4 strains are particularly noteworthy for the production of halogenated hybrid isoprenoid natural products, a relatively rare class of bacterial metabolites that possess a wide range of biological activities. MAR4 genomes are enriched in vanadium haloperoxidase and prenyltransferase genes, thus accounting for the production of these compounds. Functional characterization of the enzymes encoded in MAR4 genomes has advanced our understanding of halogenated, hybrid isoprenoid biosynthesis. Despite the exceptional biosynthetic capabilities of MAR4 bacteria, the large body of research they have stimulated has yet to be compiled. Here we review 35 years of natural product research on MAR4 strains and update the molecular diversity of this unique group of bacteria.


Assuntos
Produtos Biológicos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Produtos Biológicos/metabolismo , Terpenos/metabolismo , Família Multigênica
2.
J Biol Chem ; 298(10): 102480, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108739

RESUMO

The Natural Product Domain Seeker (NaPDoS) webtool detects and classifies ketosynthase (KS) and condensation domains from genomic, metagenomic, and amplicon sequence data. Unlike other tools, a phylogeny-based classification scheme is used to make broader predictions about the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes in which these domains are found. NaPDoS is particularly useful for the analysis of incomplete biosynthetic genes or gene clusters, as are often observed in poorly assembled genomes and metagenomes, or when loci are not clustered, as in eukaryotic genomes. To help support the growing interest in sequence-based analyses of natural product biosynthetic diversity, here we introduce version 2 of the webtool, NaPDoS2, available at http://napdos.ucsd.edu/napdos2. This update includes the addition of 1417 KS sequences, representing a major expansion of the taxonomic and functional diversity represented in the webtool database. The phylogeny-based KS classification scheme now recognizes 41 class and subclass assignments, including new type II PKS subclasses. Workflow modifications accelerate run times, allowing larger datasets to be analyzed. In addition, default parameters were established using statistical validation tests to maximize KS detection and classification accuracy while minimizing false positives. We further demonstrate the applications of NaPDoS2 to assess PKS biosynthetic potential using genomic, metagenomic, and PCR amplicon datasets. These examples illustrate how NaPDoS2 can be used to predict biosynthetic potential and detect genes involved in the biosynthesis of specific structure classes or new biosynthetic mechanisms.


Assuntos
Produtos Biológicos , Policetídeo Sintases , Software , Genoma , Metagenômica/métodos , Peptídeo Sintases/genética , Peptídeo Sintases/química , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/química , Navegador
3.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380529

RESUMO

Salinispora tropica was originally cultured from tropical marine sediments and described as the first obligate marine actinomycete genus. Soon after its discovery, it yielded the potent proteasome inhibitor salinosporamide A, a structurally novel natural product that is currently in phase III clinical trials for the treatment of cancer. If approved, it will be the first natural product derived from a cultured marine microbe to achieve clinical relevance. S. tropica produces many other biologically active natural products, including some linked to chemical defence, thus providing ecological context for their production. However, genomic analyses reveal that most natural product biosynthetic gene clusters remain orphan, suggesting that more compounds await discovery. The abundance of biosynthetic gene clusters in S. tropica supports the concept that the small molecules they encode serve important ecological functions, while their evolutionary histories suggest a potential role in promoting diversification. Better insights into the ecological functions of microbial natural products will help inform future discovery efforts.


Assuntos
Actinobacteria , Produtos Biológicos , Micromonosporaceae , Actinobacteria/genética , Micromonosporaceae/genética , Família Multigênica
4.
Appl Environ Microbiol ; 88(1): e0117621, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669450

RESUMO

The obligate marine actinobacterial genus Salinispora has become a model organism for natural product discovery, yet little is known about the ecological functions of the compounds produced by this taxon. The aims of this study were to assess the effects of live cultures and culture extracts from two Salinispora species on invertebrate predators. In choice-based feeding experiments using the bacterivorous nematode Caenorhabditis elegans, live cultures of both Salinispora species were less preferred than Escherichia coli. When given a choice between the two species, C. elegans preferred S. areniolca over S. tropica. Culture extracts from S. tropica deterred C. elegans, while those from S. arenicola did not, suggesting that compounds produced by S. tropica account for the feeding deterrence. Bioactivity-guided isolation linked compounds in the lomaiviticin series to the deterrent activity. Additional assays using the marine polychaete Ophryotrocha siberti and marine nematodes further support the deterrent activity of S. tropica against potential predators. These results provide evidence that Salinispora natural products function as a defense against predation and that the strategies of predation defense differ between closely related species. IMPORTANCE Bacteria inhabiting marine sediments are subject to predation by bacterivorous eukaryotes. Here, we test the hypothesis that sediment-derived bacteria in the genus Salinispora produce biologically active natural products that function as a defense against predation. The results reveal that cultures and culture extracts of S. tropica deter feeding by Caenorhabditis elegans and negatively affect the habitat preference of a marine annelid (Ophryotrocha siberti). These activities were linked to the lomaiviticins, a series of cytotoxic compounds produced by S. tropica. Microbial natural products that function as a defense against predation represent a poorly understood trait that can influence community structure in marine sediments.


Assuntos
Actinobacteria , Micromonosporaceae , Animais , Caenorhabditis elegans , Ecossistema , Comportamento Predatório
5.
J Nat Prod ; 85(4): 980-986, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263117

RESUMO

A new manumycin-type natural product named pacificamide (1) and its candidate biosynthetic gene cluster (pac) were discovered from the marine actinobacterium Salinispora pacifica CNT-855. The structure of the compound was determined using NMR, electronic circular dichroism, and bioinformatic predictions. The pac gene cluster is unique to S. pacifica and found in only two of the 119 Salinispora genomes analyzed across nine species. Comparative analyses of biosynthetic gene clusters encoding the production of related manumycin-type compounds revealed genetic differences in accordance with the unique pacificamide structure. Further queries of manumycin-type gene clusters from public databases revealed their limited distribution across the phylum Actinobacteria and orphan diversity that suggests additional products remain to be discovered in this compound class. Production of the known metabolite triacsin D is also reported for the first time from the genus Salinispora. This study adds two classes of compounds to the natural product collective isolated from the genus Salinispora, which has proven to be a useful model for natural product research.


Assuntos
Produtos Biológicos , Micromonosporaceae , Produtos Biológicos/metabolismo , Micromonosporaceae/genética , Micromonosporaceae/metabolismo , Família Multigênica , Polienos , Alcamidas Poli-Insaturadas
6.
Environ Microbiol ; 23(11): 6859-6875, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636122

RESUMO

The microbial communities associated with marine sediments are critical for ecosystem function yet remain poorly characterized. While culture-independent (CI) techniques capture the broadest perspective on community composition, culture-dependent (CD) methods can select for low abundance taxa that are missed using CI approaches. This study aimed to assess microbial diversity in tropical marine sediments at five shallow-water sites in Belize using both CD and CI techniques. The CD methods captured approximately 3% of the >800 genera detected across all sites using the CI approach. Additionally, 39 genera were only detected in culture, revealing rare taxa that were missed with the CI approach. Significantly different communities were detected across sites, with rare taxa playing an important role in distinguishing among communities. This study provides important baseline data describing shallow-water sediment microbial communities, evidence that standard cultivation techniques may be more effective than previously recognized, and the first steps towards identifying new taxa that are amenable to agar plate cultivation.


Assuntos
Sedimentos Geológicos , Microbiota
7.
J Nat Prod ; 84(5): 1638-1648, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33899471

RESUMO

While marine natural products have been investigated for anticancer drug discovery, they are barely screened against rare cancers. Thus, in our effort to discover potential drug leads against the rare cancer pseudomyxoma peritonei (PMP), which currently lacks effective drug treatments, we screened extracts of marine actinomycete bacteria against the PMP cell line ABX023-1. This effort led to the isolation of nine rearranged angucyclines from Streptomyces sp. CNZ-748, including five new analogues, namely, grincamycins P-T (1-5). The chemical structures of these compounds were unambiguously established based on spectroscopic and chemical analyses. Particularly, grincamycin R (3) possesses an S-containing α-l-methylthio-aculose residue, which was discovered in nature for the first time. All of the isolated compounds were evaluated against four PMP cell lines and some exhibited low micromolar inhibitory activities. To identify a candidate biosynthetic gene cluster (BGC) encoding the grincamycins, we sequenced the genome of the producing strain, Streptomyces sp. CNZ-748, and compared the BGCs detected with those linked to the production of angucyclines with different aglycon structures.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Pseudomixoma Peritoneal/tratamento farmacológico , Streptomyces/química , Antraquinonas/isolamento & purificação , Antineoplásicos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , California , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sedimentos Geológicos/microbiologia , Humanos , Estrutura Molecular , Família Multigênica , Streptomyces/genética
8.
Chembiochem ; 21(11): 1629-1632, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957947

RESUMO

Five new members of the salinilactone family, salinilactones D-H, are reported. These bicyclic lactones are produced by Salinispora bacteria and display extended or shortened alkyl side chains relative to the recently reported salinilactones A-C. They were identified by GC/MS, gas chromatographic retention index, and comparison with synthetic samples. We further investigated the occurrence of salinilactones across six newly proposed Salinispora species to gain insight into how compound production varies among taxa. The growth-inhibiting effect of this compound family on multiple biological systems including non-Salinispora actinomycetes was analyzed. Additionally, we found strong evidence for significant cytotoxicity of the title compounds.


Assuntos
Actinobacteria/química , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Lactonas/farmacologia , Micromonosporaceae/química , Actinobacteria/metabolismo , Actinoplanes/efeitos dos fármacos , Actinoplanes/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/classificação , Produtos Biológicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Lactonas/química , Lactonas/classificação , Lactonas/isolamento & purificação , Testes de Sensibilidade Microbiana , Micromonospora/efeitos dos fármacos , Micromonospora/crescimento & desenvolvimento , Micromonosporaceae/efeitos dos fármacos , Micromonosporaceae/crescimento & desenvolvimento , Micromonosporaceae/metabolismo , Estrutura Molecular
9.
Int J Syst Evol Microbiol ; 70(8): 4668-4682, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32701422

RESUMO

Ten representative actinobacterial strains isolated from marine sediments collected worldwide were studied to determine their taxonomic status. The strains were previously identified as members of the genus Salinispora and shared >99 % 16S rRNA gene sequence similarity to the three currently recognized Salinispora species. Comparative genomic analyses resulted in the delineation of six new species based on average nucleotide identity and digital DNA-DNA hybridization values below 95 and 70 %, respectively. The species status of the six new groups was supported by a core-genome phylogeny reconstructed from 2106 orthologs detected in 118 publicly available Salinispora genomes. Chemotaxonomic and physiological studies were used to complete the phenotypic characterization of the strains. The fatty acid profiles contained the major components iso-C16 : 0, C15 : 0, iso-17 : 0 and anteiso C17 : 0. Galactose and xylose were common in all whole-sugar patterns but differences were found between the six groups of strains. Polar lipid compositions were also unique for each species. Distinguishable physiological and biochemical characteristics were also recorded. The names proposed are Salinispora cortesiana sp. nov., CNY-202T (=DSM 108615T=CECT 9739T); Salinispora fenicalii sp. nov., CNT-569T (=DSM 108614T=CECT 9740T); Salinispora goodfellowii sp. nov., CNY-666T (=DSM 108616T=CECT 9738T); Salinispora mooreana sp. nov., CNT-150T (=DSM 45549T=CECT 9741T); Salinispora oceanensis sp. nov., CNT-138T (=DSM 45547T=CECT 9742T); and Salinispora vitiensis sp. nov., CNT-148T (=DSM 45548T=CECT 9743T).


Assuntos
Sedimentos Geológicos/microbiologia , Micromonosporaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Mar Drugs ; 18(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167356

RESUMO

A new cytotoxic thiodepsipeptide, verrucosamide (1), was isolated along with the known, related cyclic peptide thiocoraline, from the extract of a marine-derived actinomycete, a Verrucosispora sp., our strain CNX-026. The new peptide, which is composed of two rare seven-membered 1,4-thiazepane rings, was elucidated by a combination of spectral methods and the absolute configuration was determined by a single X-ray diffraction study. Verrucosamide (1) showed moderate cytotoxicity and selectivity in the NCI 60 cell line bioassay. The most susceptible cell lines were MDA-MB-468 breast carcinoma with an LD50 of 1.26 µM, and COLO 205 colon adenocarcinoma with an LD50 of 1.4 µM. Also isolated along with verrucosamide were three small 3-hydroxy(alkoxy)-quinaldic acid derivatives that appear to be products of the same biosynthetic pathway.


Assuntos
Antineoplásicos/farmacologia , Toxinas Marinhas/farmacologia , Micromonosporaceae/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/isolamento & purificação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Toxinas Marinhas/isolamento & purificação , Estrutura Molecular , Neoplasias/patologia , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 114(52): E11121-E11130, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229817

RESUMO

Bacterial natural products remain an important source of new medicines. DNA sequencing has revealed that a majority of natural product biosynthetic gene clusters (BGCs) maintained in bacterial genomes have yet to be linked to the small molecules whose biosynthesis they encode. Efforts to discover the products of these orphan BGCs are driving the development of genome mining techniques based on the premise that many are transcriptionally silent during normal laboratory cultivation. Here, we employ comparative transcriptomics to assess BGC expression among four closely related strains of marine bacteria belonging to the genus Salinispora The results reveal that slightly more than half of the BGCs are expressed at levels that should facilitate product detection. By comparing the expression profiles of similar gene clusters in different strains, we identified regulatory genes whose inactivation appears linked to cluster silencing. The significance of these subtle differences between expressed and silent BGCs could not have been predicted a priori and was only revealed by comparative transcriptomics. Evidence for the conservation of silent clusters among a larger number of strains for which genome sequences are available suggests they may be under different regulatory control from the expressed forms or that silencing may represent an underappreciated mechanism of gene cluster evolution. Coupling gene expression and metabolomics data established a bioinformatic link between the salinipostins and their associated BGC, while genetic manipulation established the genetic basis for this series of compounds, which were previously unknown from Salinispora pacifica.


Assuntos
Actinobacteria , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Família Multigênica/fisiologia , Transcriptoma/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismo
12.
Environ Microbiol ; 21(5): 1575-1585, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30652406

RESUMO

The production of pentabromopseudilin and related brominated compounds by Pseudoalteromonas spp. has recently been linked to the bmp biosynthetic gene cluster. This study explored the distribution and evolutionary history of this gene cluster in the genus Pseudoalteromonas. A phylogeny of the genus revealed numerous clades that do not contain type strains, suggesting considerable species level diversity has yet to be described. Comparative genomics revealed four distinct versions of the gene cluster distributed among 19 of the 101 Pseudoalteromonas genomes examined. These were largely localized to the least inclusive clades containing the Pseudoalteromonas luteoviolacea and Pseudoalteromonas phenolica type strains and show clear evidence of gene and gene cluster loss in certain lineages. Bmp gene phylogeny is largely congruent with the Pseudoalteromonas species phylogeny, suggesting vertical inheritance within the genus. However, the gene cluster is found in three different genomic environments suggesting either chromosomal rearrangement or multiple acquisition events. Bmp conservation within certain lineages suggests the encoded products are highly relevant to the ecology of these bacteria.


Assuntos
Proteínas de Bactérias/genética , Família Multigênica , Pseudoalteromonas/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genômica , Filogenia , Pseudoalteromonas/classificação , Pseudoalteromonas/isolamento & purificação , Pseudoalteromonas/metabolismo , Pirróis/química , Pirróis/metabolismo
13.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737349

RESUMO

Thousands of natural products have been identified from cultured microorganisms, yet evidence of their production in the environment has proven elusive. Technological advances in mass spectrometry, combined with public databases, now make it possible to address this disparity by detecting compounds directly from environmental samples. Here, we used adsorbent resins, tandem mass spectrometry, and next-generation sequencing to assess the metabolome of marine sediments and its relationship to bacterial community structure. We identified natural products previously reported from cultured bacteria, providing evidence they are produced in situ, and compounds of anthropogenic origin, suggesting this approach can be used as an indicator of environmental impact. The bacterial metabolite staurosporine was quantified and shown to reach physiologically relevant concentrations, indicating that it may influence sediment community structure. Staurosporine concentrations were correlated with the relative abundance of the staurosporine-producing bacterial genus Salinispora and production confirmed in strains cultured from the same location, providing a link between compound and candidate producer. Metagenomic analyses revealed numerous biosynthetic gene clusters related to indolocarbazole biosynthesis, providing evidence for noncanonical sources of staurosporine and a path forward to assess the relationships between natural products and the organisms that produce them. Untargeted environmental metabolomics circumvents the need for laboratory cultivation and represents a promising approach to understanding the functional roles of natural products in shaping microbial community structure in marine sediments.IMPORTANCE Natural products are readily isolated from cultured bacteria and exploited for useful purposes, including drug discovery. However, these compounds are rarely detected in the environments from which the bacteria are obtained, thus limiting our understanding of their ecological significance. Here, we used environmental metabolomics to directly assess chemical diversity in marine sediments. We identified numerous metabolites and, in one case, isolated strains of bacteria capable of producing one of the compounds detected. Coupling environmental metabolomics with community and metagenomic analyses provides opportunities to link compounds and producers and begin to assess the complex interactions mediated by specialized metabolites in marine sediments.


Assuntos
Bactérias/metabolismo , Produtos Biológicos/isolamento & purificação , Oceanos e Mares , Bactérias/genética , Produtos Biológicos/química , Descoberta de Drogas , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metaboloma , Metabolômica , Metagenoma , Microbiota/fisiologia , Micromonosporaceae/metabolismo , Família Multigênica , Água do Mar/microbiologia
14.
Nat Chem Biol ; 13(5): 537-543, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28319100

RESUMO

Naturally produced polybrominated diphenyl ethers (PBDEs) pervade the marine environment and structurally resemble toxic man-made brominated flame retardants. PBDEs bioaccumulate in marine animals and are likely transferred to the human food chain. However, the biogenic basis for PBDE production in one of their most prolific sources, marine sponges of the order Dysideidae, remains unidentified. Here, we report the discovery of PBDE biosynthetic gene clusters within sponge-microbiome-associated cyanobacterial endosymbionts through the use of an unbiased metagenome-mining approach. Using expression of PBDE biosynthetic genes in heterologous cyanobacterial hosts, we correlate the structural diversity of naturally produced PBDEs to modifications within PBDE biosynthetic gene clusters in multiple sponge holobionts. Our results establish the genetic and molecular foundation for the production of PBDEs in one of the most abundant natural sources of these molecules, further setting the stage for a metagenomic-based inventory of other PBDE sources in the marine environment.


Assuntos
Produtos Biológicos/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Éteres Difenil Halogenados/metabolismo , Metagenômica , Poríferos/metabolismo , Animais , Produtos Biológicos/química , Éteres Difenil Halogenados/química , Estrutura Molecular
15.
J Am Chem Soc ; 140(34): 10775-10784, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30085661

RESUMO

The microbial metabolites known as the macrolides are some of the most successful natural products used to treat infectious and immune diseases. Describing the structures of these complex metabolites, however, is often extremely difficult due to the presence of multiple stereogenic centers inherent in this class of polyketide-derived metabolites. With the availability of genome sequence data and a better understanding of the molecular genetics of natural product biosynthesis, it is now possible to use bioinformatic approaches in tandem with spectroscopic tools to assign the full stereostructures of these complex metabolites. In our quest to discover and develop new agents for the treatment of cancer, we observed the production of a highly cytotoxic macrolide, neaumycin B, by a marine-derived actinomycete bacterium of the genus Micromonospora. Neaumycin B is a complex polycyclic macrolide possessing 19 asymmetric centers, usually requiring selective degradation, crystallization, derivatization, X-ray diffraction analysis, synthesis, or other time-consuming approaches to assign the complete stereostructure. As an alternative approach, we sequenced the genome of the producing strain and identified the neaumycin gene cluster ( neu). By integrating the known stereospecificities of biosynthetic enzymes with comprehensive NMR analysis, the full stereostructure of neaumycin B was confidently assigned. This approach exemplifies how mining gene cluster information while integrating NMR-based structure data can achieve rapid, efficient, and accurate stereostructural assignments for complex macrolides.


Assuntos
Antineoplásicos/química , Genômica/métodos , Macrolídeos/química , Sequência de Aminoácidos , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Biologia Computacional , Humanos , Macrolídeos/isolamento & purificação , Macrolídeos/farmacologia , Micromonospora/química , Micromonospora/genética , Família Multigênica , Alinhamento de Sequência , Estereoisomerismo
16.
Microbiology (Reading) ; 164(7): 946-955, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877785

RESUMO

Bacterial genome sequences consistently contain many more biosynthetic gene clusters encoding specialized metabolites than predicted by the compounds discovered from the respective strains. One hypothesis invoked to explain the cryptic nature of these gene clusters is that standard laboratory conditions do not provide the environmental cues needed to trigger gene expression. A potential source of such cues is other members of the bacterial community, which are logical targets for competitive interactions. In this study, we examined the effects of such interactions on specialized metabolism in the marine actinomycete Salinispora tropica. The results show that antibiotic activities and the concentration of some small molecules increase in the presence of co-occurring bacterial strains relative to monocultures. Some increases in antibiotic activity could be linked to nutrient depletion by the competitor as opposed to the production of a chemical cue. Other increases were correlated with the production of specific compounds by S. tropica. In particular, one interaction with a Vibrio sp. consistently induced antibiotic activity and was associated with parent ions that were unique to this interaction, although the associated compound could not be identified. This study provides insight into the metabolomic complexities of bacterial interactions and baseline information for future genome mining efforts.


Assuntos
Interações Microbianas/fisiologia , Micromonosporaceae/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Metabolômica , Micromonosporaceae/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
17.
Environ Microbiol ; 19(6): 2182-2191, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28205416

RESUMO

Members of the actinomycete genus Streptomyces are non-motile, filamentous bacteria that are well-known for the production of biomedically relevant secondary metabolites. While considered obligate aerobes, little is known about how these bacteria respond to periods of reduced oxygen availability in their natural habitats, which include soils and ocean sediments. Here, we provide evidence that the marine streptomycete strain CNQ-525 can reduce MnO2 via a diffusible mechanism. We investigated the effects of hypoxia on secondary metabolite production and observed a shift away from the antibiotic napyradiomycin towards 8-amino-flaviolin, an intermediate in the napyradiomycin biosynthetic pathway. We purified 8-amino-flaviolin and demonstrated that it is reversibly redox-active (midpoint potential -474.5 mV), indicating that it has the potential to function as an endogenous extracellular electron shuttle. This study provides evidence that environmentally triggered changes in secondary metabolite production may provide clues to the ecological functions of specific compounds, and that Gram-positive bacteria considered to be obligate aerobes may play previously unrecognized roles in biogeochemical cycling through mechanisms that include extracellular electron shuttling.


Assuntos
Anaerobiose/fisiologia , Compostos de Manganês/metabolismo , Naftalenos/metabolismo , Óxidos/metabolismo , Metabolismo Secundário/fisiologia , Streptomyces/metabolismo , Antibacterianos/farmacologia , Vias Biossintéticas , Ecologia , Sedimentos Geológicos/microbiologia , Naftoquinonas/metabolismo , Oxirredução , Oxigênio/análise
18.
Environ Microbiol ; 19(9): 3660-3673, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752948

RESUMO

Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.


Assuntos
Vias Biossintéticas/genética , Micromonosporaceae/genética , Micromonosporaceae/metabolismo , Família Multigênica/genética , Metabolismo Secundário/genética , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Sequência de Bases , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Genômica , Micromonosporaceae/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia da Água
19.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986719

RESUMO

Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. IMPORTANCE: Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S. arenicola extracts. The results reveal that certain predatory bacteria were consistently less abundant following exposure to extracts, suggesting that microbial metabolites mediate competitive interactions. Other taxa increased in relative abundance, suggesting a benefit from the extracts themselves or the resulting changes in the community. This study takes a first step toward assessing the impacts of bacterial metabolites on sediment microbial communities. The results provide insight into how low-abundance organisms may help structure microbial communities in ocean sediments.


Assuntos
Actinobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Metabolismo Secundário/fisiologia , Actinobacteria/classificação , Actinobacteria/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/fisiologia , Oceanos e Mares , Microbiologia da Água
20.
J Nat Prod ; 80(3): 588-597, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28335604

RESUMO

In order to expedite the rapid and efficient discovery and isolation of novel specialized metabolites, while minimizing the waste of resources on rediscovery of known compounds, it is crucial to develop efficient approaches for strain prioritization, rapid dereplication, and the assessment of favored cultivation and extraction conditions. Herein we interrogated bacterial strains by systematically evaluating cultivation and extraction parameters with LC-MS/MS analysis and subsequent dereplication through the Global Natural Product Social Molecular Networking (GNPS) platform. The developed method is fast, requiring minimal time and sample material, and is compatible with high-throughput extract analysis, thereby streamlining strain prioritization and evaluation of culturing parameters. With this approach, we analyzed 146 marine Salinispora and Streptomyces strains that were grown and extracted using multiple different protocols. In total, 603 samples were analyzed, generating approximately 1.8 million mass spectra. We constructed a comprehensive molecular network and identified 15 molecular families of diverse natural products and their analogues. The size and breadth of this network shows statistically supported trends in molecular diversity when comparing growth and extraction conditions. The network provides an extensive survey of the biosynthetic capacity of the strain collection and a method to compare strains based on the variety and novelty of their metabolites. This approach allows us to quickly identify patterns in metabolite production that can be linked to taxonomy, culture conditions, and extraction methods, as well as informing the most valuable growth and extraction conditions.


Assuntos
Bactérias/genética , Produtos Biológicos , Variação Genética , Bactérias/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Metabolômica , Estrutura Molecular , Salinidade , Streptomyces/química , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA