Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1234, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089498

RESUMO

The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

2.
ACS Appl Mater Interfaces ; 8(14): 9454-61, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27004536

RESUMO

Colloidal nanosphere self-assembly effectively generates ordered nanostructures, prompting tremendous interest in many applications such as photonic crystals and templates for inverse opal fabrication. Here we report the self-assembly of low-cost, graft copolymer nanospheres for CO2 capture membranes. Specifically, poly(dimethylsiloxane)-graft-poly(4-vinylpyridine) (PDMS-g-P4VP) is synthesized via one-pot, free radical dispersion polymerization to give discrete monodisperse nanospheres. These nanospheres comprise a surface-anchored highly permeable PDMS layer and internal CO2-philic P4VP spherical core. Their diameter is controllable below the submicrometer range by varying grafting ratios. The colloidal dispersion forms a long-range, close-packed hexagonal array on a substrate by inclined deposition and convective assembly. The array shows dispersion medium-dependent packing characteristics. A thermodynamic correlation is determined using different solvents to obtain stable PDMS-g-P4VP dispersions and interpreted in terms of Flory-Huggins interaction parameter. As a proof-of-concept, the implementation of these nanospheres into membranes simultaneously enhances the CO2 permeability and CO2/N2 selectivity of PDMS-based transport matrixes. Upon physical aging of the solution, the CO2/N2 selectivity is improved up to 26, one of the highest values for highly permeable PDMS-based polymeric membranes.

3.
ChemSusChem ; 8(22): 3783-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26482215

RESUMO

Herein, we report a high performance polymer membrane with simultaneously large improvements in the CO2 permeability and CO2/N2 selectivity. These improvements are obtained by incorporation of a multi-functional amphiphilic comb copolymer micelle, that is, poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM), into a poly(amide-b-ethylene oxide) (Pebax) matrix. Both CO2 and N2 permeabilities continuously increased with PDMS-g-POEM content, whereas the CO2/N2 selectivity increased up to 40 wt % of PDMS-g-POEM, which enabled the maximum performance to approach the upper bound limit (2008). The membranes with PDMS-g-POEM exhibited greater CO2 permeability and CO2/N2 selectivity than those with a zeolitic imidazolate framework (ZIF-8), a well-known expensive inorganic filler, indicating the effectiveness of PDMS-g-POEM micelles for CO2 capture.


Assuntos
Dióxido de Carbono/química , Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Micelas , Computadores Moleculares , Fenômenos Mecânicos , Modelos Moleculares , Nitrogênio/química , Permeabilidade
4.
ACS Appl Mater Interfaces ; 7(14): 7767-75, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25805232

RESUMO

We report the facile synthesis of a well-organized meso-macroporous TiO2/SiO2 thin film with high porosity and good interconnectivity from a binary mixture (i.e., titania precursor and polymer template). Our process is based on self-assembly of the amphiphilic rubbery comb copolymer, poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM) with titanium tetraisopropoxide (TTIP). SiO2 is self-provided by thermal oxidation of PDMS chains during calcination under air. The selective, preferential interaction between TTIP and the hydrophilic POEM chains was responsible for the formation of well-organized TiO2/SiO2 films, as supported by transmission electron microscopy, scanning electron microscopy, X-ray photospectroscopy, and X-ray diffraction analyses. We investigated in detail the effect of precursor content, solvent type, and polymer concentration on thin film morphology. Photodegradation of methyl orange by the well-organized meso-macroporous TiO2/SiO2 film was greater than that of a dense TiO2 film prepared without PDMS-g-POEM as well as a SiO2-etched TiO2 film. These results indicate that the well-organized structure and SiO2 doping of the TiO2 film play a pivotal role in enhancing its photocatalytic properties.

5.
Nanoscale ; 6(5): 2718-29, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24457831

RESUMO

TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.


Assuntos
Corantes/química , Nanoestruturas/química , Prata/química , Energia Solar , Titânio/química , Transporte de Elétrons , Líquidos Iônicos/química , Nióbio/química
6.
ChemSusChem ; 6(8): 1384-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23893968

RESUMO

Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 µm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs.


Assuntos
Corantes/química , Condutividade Elétrica , Fontes de Energia Elétrica , Nanofios/química , Energia Solar , Titânio/química , Técnicas de Química Sintética , Etilenoglicóis/química , Oxalatos/química , Temperatura , Água/química
7.
ACS Appl Mater Interfaces ; 5(14): 6615-21, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23777632

RESUMO

Mesoporous MgTiO3 perovskite with a high porosity and interfacial properties were synthesized via a solvothermal reaction at 150 °C for 10 h using a graft copolymer, i.e., poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) with a well-ordered micellar morphology as a structure-directing agent. A PVC-g-POEM graft copolymer with a wormlike morphology was utilized as a soft matrix to prepare a mixed matrix membrane (MMM) with mesoporous MgTiO3 perovskite through a solution-casting method. The structure and morphology of PVC-g-POEM graft copolymer was carefully tuned by controlling polymer-solvent interactions, as characterized by transmission electron microscopy (TEM). The average pore diameter of the MgTiO3 perovskite was 10.4 nm, which is effective in facilitating gas transport via Knudsen diffusion through mesopores as well as improving interfacial contact with the organic polymer matrix. Because of a high porosity (0.56), the density of mesoporous MgTiO3 (1.75 g/cm(3)) was much lower than that of dense nonporous MgTiO3 (4 g/cm(3)) and not significantly higher than that of PVC-g-POEM (1.25 g/cm(3)), leading to a uniform distribution of MgTiO3 in MMM. The permeability of MMM with MgTiO3 was greater than those of MMM with only MgO or TiO2, indicating the simultaneous improvement of solubility and diffusivity in the former, as supported by CO2 temperature-programmed desorption (TPD) measurements. The MMM with MgTiO3 25 wt % exhibited a CO2 permeability improvement of 140% up to 138.7 Barrer (1 Barrer = 1 × 10(-10) cm(3)(STP) cm cm(-2) s(-1) cmHg(-1)) without a large loss of CO2/N2 selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA