Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Biophys Res Commun ; 665: 10-18, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37148741

RESUMO

Autophagy has bidirectional functions in cancer by facilitating cell survival and death in a context-dependent manner. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a large family of proteins essential for numerous biological processes, including autophagy; nevertheless, their potential function in cancer malignancy remains unclear. Here, we explored the gene expression patterns of SNAREs in tissues of patients with colorectal cancer (CRC) and discovered that SEC22B expression, a vesicle SNARE, was higher in tumor tissues than in normal tissues, with a more significant increase in metastatic tissues. Interestingly, SEC22B knockdown dramatically decreased CRC cell survival and growth, especially under stressful conditions, such as hypoxia and serum starvation, and decreased the number of stress-induced autophagic vacuoles. Moreover, SEC22B knockdown successfully attenuated liver metastasis in a CRC cell xenograft mouse model, with histological signs of decreased autophagic flux and proliferation within cancer cells. Together, this study posits that SEC22B plays a crucial role in enhancing the aggressiveness of CRC cells, suggesting that SEC22B might be an attractive therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Proteínas SNARE , Animais , Humanos , Camundongos , Autofagossomos/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948208

RESUMO

Recurrence and metastasis remain major obstacles in colorectal cancer (CRC) treatment. Recent studies suggest that a small subpopulation of cells with a self-renewal ability, called cancer stem-like cells (CSCs), promotes recurrence and metastasis in CRC. Unfortunately, no CSC inhibitor has been demonstrated to be more effective than existing chemotherapeutic drugs, resulting in a significant unmet need for effective CRC therapies. In this study, transcriptomic profiling of metastatic tumors from CRC patients revealed significant upregulation in the Wnt pathway and stemness genes. Thus, we examined the therapeutic effect of the small-molecule Wnt inhibitor ICG-001 on cancer stemness and metastasis. The ICG-001 treatment efficiently attenuated self-renewal activity and metastatic potential. Mechanistically, myeloid ecotropic viral insertion site 1 (MEIS1) was identified as a target gene of ICG-001 that is transcriptionally regulated by Wnt signaling. A series of functional analyses revealed that MEIS1 enhanced the CSC behavior and metastatic potential of the CRC cells. Collectively, our findings suggest that ICG-001 efficiently inhibits CRC stemness and metastasis by suppressing MEIS1 expression. These results provide a basis for the further clinical investigation of ICG-001 as a targeted therapy for CSCs, opening a new avenue for the development of novel Wnt inhibitors for the treatment of CRC metastasis.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Proteína Meis1/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirimidinonas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Perfilação da Expressão Gênica/métodos , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Transcrição Gênica/efeitos dos fármacos
3.
Cancer Med ; 12(6): 7603-7615, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36345155

RESUMO

BACKGROUND: Predicting the survival of cancer patients provides prognostic information and therapeutic guidance. However, improved prediction models are needed for use in diagnosis and treatment. OBJECTIVE: This study aimed to identify genomic prognostic biomarkers related to colon cancer (CC) based on computational data and to develop survival prediction models. METHODS: We performed machine-learning (ML) analysis to screen pathogenic survival-related driver genes related to patient prognosis by integrating copy number variation and gene expression data. Moreover, in silico system analysis was performed to clinically assess data from ML analysis, and we identified RABGAP1L, MYH9, and DRD4 as candidate genes. These three genes and tumor stages were used to generate survival prediction models. Moreover, the genes were validated by experimental and clinical analyses, and the theranostic application of the survival prediction models was assessed. RESULTS: RABGAP1L, MYH9, and DRD4 were identified as survival-related candidate genes by ML and in silico system analysis. The survival prediction model using the expression of the three genes showed higher predictive performance when applied to predict the prognosis of CC patients. A series of functional analyses revealed that each knockdown of three genes reduced the protumor activity of CC cells. In particular, validation with an independent cohort of CC patients confirmed that the coexpression of MYH9 and DRD4 gene expression reflected poorer clinical outcomes in terms of overall survival and disease-free survival. CONCLUSIONS: Our survival prediction approach will contribute to providing information on patients and developing a therapeutic strategy for CC patients.


Assuntos
Neoplasias do Colo , Variações do Número de Cópias de DNA , Humanos , Prognóstico , Intervalo Livre de Doença , Neoplasias do Colo/genética , Aprendizado de Máquina , Biomarcadores Tumorais/genética
4.
Theranostics ; 12(9): 4399-4414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673579

RESUMO

Rationale: Dysadherin is a tumor-associated, membrane-embedded antigen found in multiple types of cancer cells, and associated with malignant behavior of cancer cells; however, the fundamental molecular mechanism by which dysadherin drives aggressive phenotypes of cancer is not yet fully determined. Methods: To get a mechanistic insight, we explored the physiological relevance of dysadherin on intestinal tumorigenesis using dysadherin knockout mice and investigated its impact on clinicopathological features in patients with advanced colorectal cancer (CRC). Next, to discover the downstream signaling pathways of dysadherin, we applied bioinformatic analysis using gene expression data of CRC patient tumors and dysadherin knockout cancer cells. Additionally, comprehensive proteomic and molecular analyses were performed to identify dysadherin-interacting proteins and their functions. Results: Dysadherin deficiency suppressed intestinal tumorigenesis in both genetic and chemical mouse models. Moreover, increased dysadherin expression in cancer cells accounted for shorter survival in CRC patients. Comprehensive bioinformatics analyses suggested that the effect of dysadherin deletion is linked to a reduction in the extracellular matrix receptor signaling pathway. Mechanistically, the extracellular domain of dysadherin bound fibronectin and enhanced cancer cell adhesion to fibronectin, facilitating the activation of integrin-mediated mechanotransduction and leading to yes-associated protein 1 activation. Dysadherin-fibronectin interaction promoted cancer cell growth, survival, migration, and invasion, effects collectively mediated the protumor activity of dysadherin. Conclusion: Our results highlight a novel function of dysadherin as a driver of mechanotransduction that stimulates CRC progression, providing a potential therapy strategy for CRC.


Assuntos
Neoplasias Colorretais , Canais Iônicos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mecanotransdução Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Proteômica
5.
Theranostics ; 12(12): 5258-5271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910805

RESUMO

Rationale: Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that selectively marks cancer stem-like cells (CSCs) and promotes malignant progression in colorectal cancer (CRC). However, the exact molecular mechanism by which DCLK1 drives the aggressive phenotype of cancer cells is incompletely determined. Methods: Here, we performed comprehensive genomics and proteomics analyses to identify binding proteins of DCLK1 and discovered X-ray repair cross-complementing 5 (XRCC5). Thus, we explored the biological role and downstream events of the DCLK1/XRCC5 axis in human CRC cells and CRC mouse models. Results: The results of comprehensive bioinformatics analyses suggested that DCLK1-driven CRC aggressiveness is linked to inflammation. Mechanistically, DCLK1 bound and phosphorylated XRCC5, which in turn transcriptionally activated cyclooxygenase-2 expression and enhanced prostaglandin E2 production; these events collectively generated the inflammatory tumor microenvironment and enhanced the aggressive behavior of CRC cells. Consistent with the discovered mechanism, inhibition of DCLK1 kinase activity strongly impaired the tumor seeding and growth capabilities in CRC mouse models. Conclusion: Our study illuminates a novel mechanism that mediates the pro-inflammatory function of CSCs in driving the aggressive phenotype of CRC, broadening the biological function of DCLK1 in CRC.


Assuntos
Neoplasias Colorretais , Quinases Semelhantes a Duplacortina , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Complemento C5/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Quinases Semelhantes a Duplacortina/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Autoantígeno Ku/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral/genética , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA