Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(2): 331-341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151595

RESUMO

Multiplexed fluorescence imaging is typically limited to three- to five-plex on standard setups. Sequential imaging methods based on iterative labeling and imaging enable practical higher multiplexing, but generally require a complex fluidic setup with several rounds of slow buffer exchange (tens of minutes to an hour for each exchange step). We report the thermal-plex method, which removes complex and slow buffer exchange steps and provides fluidic-free, rapid sequential imaging. Thermal-plex uses simple DNA probes that are engineered to fluoresce sequentially when, and only when, activated with transient exposure to heating spikes at designated temperatures (thermal channels). Channel switching is fast (<30 s) and is achieved with a commercially available and affordable on-scope heating device. We demonstrate 15-plex RNA imaging (five thermal × three fluorescence channels) in fixed cells and retina tissues in less than 4 min, without using buffer exchange or fluidics. Thermal-plex introduces a new labeling method for efficient sequential multiplexed imaging.


Assuntos
DNA , Imagem Óptica , Imagem Óptica/métodos , RNA , Temperatura
2.
Nucleic Acids Res ; 51(7): 3030-3040, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869666

RESUMO

The hybridization and dehybridization of DNA subject to tension is relevant to fundamental genetic processes and to the design of DNA-based mechanobiology assays. While strong tension accelerates DNA melting and decelerates DNA annealing, the effects of tension weaker than 5 pN are less clear. In this study, we developed a DNA bow assay, which uses the bending rigidity of double-stranded DNA (dsDNA) to exert weak tension on a single-stranded DNA (ssDNA) target in the range of 2-6 pN. Combining this assay with single-molecule FRET, we measured the hybridization and dehybridization kinetics between a 15 nt ssDNA under tension and a 8-9 nt oligonucleotide, and found that both the hybridization and dehybridization rates monotonically increase with tension for various nucleotide sequences tested. These findings suggest that the nucleated duplex in its transition state is more extended than the pure dsDNA or ssDNA counterpart. Based on coarse-grained oxDNA simulations, we propose that this increased extension of the transition state is due to steric repulsion between the unpaired ssDNA segments in close proximity to one another. Using linear force-extension relations verified by simulations of short DNA segments, we derived analytical equations for force-to-rate conversion that are in good agreement with our measurements.


Assuntos
DNA , Oligonucleotídeos , Oligonucleotídeos/genética , Hibridização de Ácido Nucleico , DNA/genética , DNA de Cadeia Simples/genética , Fenômenos Mecânicos
3.
Nucleic Acids Res ; 48(9): 5147-5156, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32282905

RESUMO

Cyclization of DNA with sticky ends is commonly used to measure DNA bendability as a function of length and sequence, but how its kinetics depend on the rotational positioning of the sticky ends around the helical axis is less clear. Here, we measured cyclization (looping) and decyclization (unlooping) rates (kloop and kunloop) of DNA with sticky ends over three helical periods (100-130 bp) using single-molecule fluorescence resonance energy transfer (FRET). kloop showed a nontrivial undulation as a function of DNA length whereas kunloop showed a clear oscillation with a period close to the helical turn of DNA (∼10.5 bp). The oscillation of kunloop was almost completely suppressed in the presence of gaps around the sticky ends. We explain these findings by modeling double-helical DNA as a twisted wormlike chain with a finite width, intrinsic curvature, and stacking interaction between the end base pairs. We also discuss technical issues for converting the FRET-based cyclization/decyclization rates to an equilibrium quantity known as the J factor that is widely used to characterize DNA bending mechanics.


Assuntos
DNA/química , Ciclização , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico
4.
Phys Rev Lett ; 122(21): 218101, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283336

RESUMO

Base-pair mismatch can relieve mechanical stress in highly strained DNA molecules, but how it affects their kinetic stability is not known. Using single-molecule fluorescence resonance energy transfer, we measured the lifetimes of tightly bent DNA loops with and without base-pair mismatch. Surprisingly, for loops captured by stackable sticky ends which leave single-stranded DNA breaks (or nicks) upon annealing, the mismatch decreased the loop lifetime despite reducing the overall bending stress, and the decrease was largest when the mismatch was placed at the DNA midpoint. These findings suggest that base-pair mismatch increases bending stress at the opposite side of the loop through an allosteric mechanism known as cooperative kinking. Based on this mechanism, we present a three-state model that explains the apparent dichotomy between thermodynamic and kinetic stability.


Assuntos
Pareamento Incorreto de Bases , DNA/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Químicos , Conformação de Ácido Nucleico , Termodinâmica
5.
Methods ; 105: 34-43, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27064000

RESUMO

Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , Imagem Individual de Molécula/métodos , Ligação Proteica , Proteínas/química
6.
Food Sci Anim Resour ; 39(6): 934-942, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31950109

RESUMO

Previous studies on dry aged beef, which substantially increases the value of low-grade raw beef and non-preferred cuts, are currently limited to the observation of aged beef changes in laboratory settings or under particular aging conditions, whereas the factors influencing aging have so far been underexplored. Herein, we attempt to establish a technique for distinguishing between fresh and aged beef by observing changes in quality during beef aging. Specifically, we analyzed the effect of time on the quality of aged beef sourced from three Korean manufacturers and identified quality indicators that can be used to distinguish between fresh and aged beef, regardless of supplier. Storage/trimming/aging/cooking losses, moisture/fat/protein/collagen contents, and water holding capacity were tested as potential indicators, among other parameters. As a result, the quality of dry aged beef was shown to be supplier-dependent, which made the identification of factors for the above origin-independent discrimination difficult. Nevertheless, as storage loss, water holding capacity, and cooking loss significantly changed with dry aging time in all cases, these parameters were concluded to be potentially suited for discrimination purposes. The insights gained in this work may help promoting further research in this field and contribute to the development of a standard for consistent aged beef production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA