Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(6): 195, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696046

RESUMO

Air pollution poses a serious challenge to public health and simultaneously exacerbating regional & intergenerational health inequality. This research introduces PM2.5 pollution into the intergenerational health transmission model, and estimates its impact on health inequality in China using Ordered Logit Regression (OLR) and Multi-scale Geographically Weighted Regression (MGWR) model. The results indicate that PM2.5 pollution exacerbate the intergenerational health inequality, and its impacts show inconsistency across family income levels, parental health insurance status, and area of residence. Specifically, it is more difficult for offspring in low-income families to escape from the influence of unhealthy family to become upwardly mobile. Additionally, this health inequality is more significant in households in which at least one parent does not have health insurance. Moreover, the intergenerational solidification caused by PM2.5 pollution is higher in the east and lower in the west. Both the PM2.5 level and solidification effect are high in Beijing-Tianjin-Hebei region, Yangtze River Delta region and central areas of China, which is the focus of air pollution management. These findings suggest that more emphasis should be placed on family-based health promotion. In areas with high PM2.5 pollution levels, resources, subsidies and air pollution protection should be provided for less healthy families with lower incomes and no health insurance.


Assuntos
Poluição do Ar , Material Particulado , Material Particulado/análise , Humanos , China , Poluição do Ar/análise , Disparidades nos Níveis de Saúde , Poluentes Atmosféricos/análise , Fatores Socioeconômicos , Exposição Ambiental
2.
Environ Geochem Health ; 44(9): 3115-3132, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33846892

RESUMO

With the expansion of the global novel coronavirus disease (COVID-19) pandemic, unprecedented interventions have been widely implemented in many countries, including China. In view of this scenario, this research aims to explore the effectiveness of population mobility restriction in alleviating epidemic transmission during different stages of the outbreak. Taking Shenzhen, a city with a large immigrant population in China, as a case study, the real-time reproduction number of COVID-19 is estimated by statistical methods to represent the dynamic spatiotemporal transmission pattern of COVID-19. Furthermore, migration data between Shenzhen and other provinces are collected to investigate the impact of nationwide population flow on near-real-time dynamic reproductive numbers. The results show that traffic flow control between populated cities has an inhibitory effect on urban transmission, but this effect is not significant in the late stage of the epidemic spread in China. This finding implies that the government should limit international and domestic population movement starting from the very early stage of the outbreak. This work confirms the effectiveness of travel restriction measures in the face of COVID-19 in China and provides new insight for densely populated cities in imposing intervention measures at various stages of the transmission cycle.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA