Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
1.
Cell ; 173(6): 1413-1425.e14, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29754815

RESUMO

BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Camundongos , Mutação , Transplante de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/genética , Resultado do Tratamento , Vorinostat/farmacologia
2.
Nat Immunol ; 21(6): 696, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32210390

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Immunol ; 20(6): 756-764, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110315

RESUMO

Emerging data show that tissue-resident memory T (TRM) cells play an important protective role at murine and human barrier sites. TRM cells in the epidermis of mouse skin patrol their surroundings and rapidly respond when antigens are encountered. However, whether a similar migratory behavior is performed by human TRM cells is unclear, as technology to longitudinally follow them in situ has been lacking. To address this issue, we developed an ex vivo culture system to label and track T cells in fresh skin samples. We validated this system by comparing in vivo and ex vivo properties of murine TRM cells. Using nanobody labeling, we subsequently demonstrated in human ex vivo skin that CD8+ TRM cells migrated through the papillary dermis and the epidermis, below sessile Langerhans cells. Collectively, this work allows the dynamic study of resident immune cells in human skin and provides evidence of tissue patrol by human CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Pele/imunologia , Animais , Antígenos/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Epiderme/imunologia , Epiderme/metabolismo , Imunofluorescência , Humanos , Camundongos , Especificidade de Órgãos/imunologia , Anticorpos de Domínio Único/imunologia , Pele/metabolismo , Vacinas de DNA/genética , Vacinas de DNA/imunologia
4.
Nature ; 621(7977): 171-178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648867

RESUMO

Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.


Assuntos
Aciltransferases , Triglicerídeos , Animais , Humanos , Camundongos , Aciltransferases/metabolismo , Coenzima A/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Escherichia coli/metabolismo , Homeostase , Triglicerídeos/biossíntese , Metabolismo Energético , Nutrientes/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(4): e2216055120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669105

RESUMO

DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.


Assuntos
Dano ao DNA , Animais , Reparo do DNA , Replicação do DNA , Células-Tronco Hematopoéticas/metabolismo , Mamíferos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
6.
Biostatistics ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637995

RESUMO

Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.

7.
J Virol ; 98(8): e0022324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39046246

RESUMO

Porcine circovirus type 3 (PCV3) is closely associated with various diseases, such as the porcine dermatitis, nephropathy syndrome, and multisystemic clinicopathological diseases. PCV3-associated diseases are increasingly recognized as severe diseases in the global swine industry. Ring finger protein 2 (RNF2), an E3 ubiquitin ligase exclusively located in the nucleus, contributes to various biological processes. This ligase interacts with the PCV3 Cap. However, its role in PCV3 replication remains unclear. This study confirmed that the nuclear localization signal domain of the Cap and the RNF2 N-terminal RING domain facilitate the interaction between the Cap and RNF2. Furthermore, RNF2 promoted the binding of K48-linked polyubiquitination chains to lysine at positions 139 and 140 (K139 and K140) of the PCV3 Cap, thereby degrading the Cap. RNF2 knockdown and overexpression increased or decreased PCV3 replication, respectively. Moreover, the RING domain-deleted RNF2 mutant eliminated the RNF2-induced degradation of the PCV3 Cap and RNF2-mediated inhibition of viral replication. This indicates that both processes were associated with its E3 ligase activity. Our findings demonstrate that RNF2 can interact with and degrade the PCV3 Cap via its N-terminal RING domain in a ubiquitination-dependent manner, thereby inhibiting PCV3 replication.IMPORTANCEPorcine circovirus type 3 is a recently described pathogen that is prevalent worldwide, causing substantial economic losses to the swine industry. However, the mechanisms through which host proteins regulate its replication remain unclear. Here, we demonstrate that ring finger protein 2 inhibits porcine circovirus type 3 replication by interacting with and degrading the Cap of this pathogen in a ubiquitination-dependent manner, requiring its N-terminal RING domain. Ring finger protein 2-mediated degradation of the Cap relies on its E3 ligase activity and the simultaneous existence of K139 and K140 within the Cap. These findings reveal the mechanism by which this protein interacts with and degrades the Cap to inhibit porcine circovirus type 3 replication. This consequently provides novel insights into porcine circovirus type 3 pathogenesis and facilitates the development of preventative measures against this pathogen.


Assuntos
Proteínas do Capsídeo , Circovirus , Ubiquitina-Proteína Ligases , Ubiquitinação , Replicação Viral , Circovirus/genética , Circovirus/metabolismo , Circovirus/fisiologia , Animais , Suínos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Humanos , Células HEK293 , Proteólise , Linhagem Celular , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Infecções por Circoviridae/virologia , Infecções por Circoviridae/metabolismo , Ligação Proteica
8.
Brain ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167540

RESUMO

The expansion of GGC repeats within NOTCH2NLC leads to the translation of the uN2CpolyG protein, the primary pathogenic factor in neuronal intranuclear inclusion disease (NIID). This study aims to explore the deposition of uN2CpolyG as an amyloid in the vessel wall, leading to uN2CpolyG cerebral amyloid angiopathy (CAA)-related cerebral microbleeds (CMBs). A total of 97 patients with genetically confirmed NIID were enrolled in this study. We analyzed the presence of CMBs using susceptibility-weighted imaging sequences and compared general clinical information, cerebrovascular risk factors, stroke history, antiplatelet medication use, and MRI features between NIID patients with and without CMBs. We further performed hematoxylin and eosin (H&E), Perl's, Congo red, and Thioflavin S staining, ubiquitin, p62 and uN2CpolyG immunostaining on brain tissue obtained from four NIID patients. A total of 354 CMBs were detected among 41 patients with NIID, with nearly half located in the deep brain, one-third in the lobes, and approximately 20% in the infratentorial area. No significant differences in cerebrovascular disease risk factors or history of antiplatelet drug use were observed between patients with and without CMBs. However, patients with CMBs suffered a higher incidence of previous ischemic and hemorrhagic stroke events. This group also had a higher incidence of recent subcortical infarcts and a higher proportion of white matter lesions in the external capsule and temporal pole. Conversely, patients without CMBs showed higher detection of high signals at the corticomedullary junction on diffusion-weighted imaging and more pronounced brain atrophy. H&E staining showed blood vessel leakage and hemosiderin-laden macrophage clusters, and Prussian blue staining revealed brain tissue iron deposition. CMBs occurred more frequently in small vessels lacking intranuclear inclusions, and extensive degeneration of endothelial cells and smooth muscle fibres was observed mainly in vessels lacking inclusions. Congo red-positive amyloid deposition was observed in the cerebral vessels of NIID patients, with disordered filamentous fibres appearing under an electron microscope. Additionally, the co-localization of Thioflavin S-labeled amyloid and uN2CpolyG protein in the cerebral vascular walls of NIID patients further suggested that uN2CpolyG is the main pathogenic protein in this form of amyloid angiopathy. In conclusion, we reviewed patients with GGC repeat expansion of NOTCH2NLC from a novel perspective, providing initial clinical, neuroimaging, and pathological evidence suggesting that uN2CpolyG may contribute to a distinct type of CAA.

9.
Exp Cell Res ; 435(2): 113929, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272106

RESUMO

Early repolarization syndrome (ERS) is defined as occurring in patients with early repolarization pattern who have survived idiopathic ventricular fibrillation with clinical evaluation unrevealing for other explanations. The pathophysiologic basis of the ERS is currently uncertain. The objective of the present study was to examine the electrophysiological mechanism of ERS utilizing induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing. Whole genome sequencing was used to identify the DPP6 (c.2561T > C/p.L854P) variant in four families with sudden cardiac arrest induced by ERS. Cardiomyocytes were generated from iPSCs from a 14-year-old boy in the four families with ERS and an unrelated healthy control subject. Patch clamp recordings revealed more significant prolongation of the action potential duration (APD) and increased transient outward potassium current (Ito) (103.97 ± 18.73 pA/pF vs 44.36 ± 16.54 pA/pF at +70 mV, P < 0.05) in ERS cardiomyocytes compared with control cardiomyocytes. Of note, the selective correction of the causal variant in iPSC-derived cardiomyocytes using CRISPR/Cas9 gene editing normalized the Ito, whereas prolongation of the APD remained unchanged. ERS cardiomyocytes carrying DPP6 mutation increased Ito and lengthen APD, which maybe lay the electrophysiological foundation of ERS.

10.
PLoS Genet ; 18(6): e1009814, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771864

RESUMO

A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG's applications to Alzheimer's disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA