Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 145(48): 26266-26278, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38011228

RESUMO

Fabricating insoluble and infusible porous materials into gels for advanced applications is of great importance but has formidable challenges. Here, we present a general, facile, and scalable protocol to fabricate covalent organic framework (COF) gels using a group-protection synthesis strategy. To prove the generality of this strategy, we successfully prepared 10 types of COF organohydrogels with high crystallinity, porosity, good mechanical properties, and excellent solvent and freezing resistance. Notably, these COF organohydrogels can easily transform into hydrogels, organogels, and aerogels, breaking the gaps between different types of COF gels. An in-depth mechanism investigation unveils that the group-protection strategy effectively slows down the formation rate and regulates the morphology of COFs, benefiting the formation of cross-linked nanofibers/nanosheets to produce COF gels. We also find that the hydrogen bond network formed by the organic/water binary solvent and functional groups in the COF skeletons plays a vital role in creating organohydrogels and maintaining frost resistance and solvent resistance. As an application demonstration, COF gels installed with photoresponsive azobenzene groups show excellent solar energy absorption, photothermal conversion, and water transmission performances, demonstrating great potential in solar desalination. This work enriches the synthesis toolboxes for COF gels and expands the application scope of COFs.

2.
Angew Chem Int Ed Engl ; 62(6): e202217240, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478518

RESUMO

Developing new materials for anhydrous proton conduction under high-temperature conditions is significant and challenging. Herein, we create a series of highly crystalline covalent organic frameworks (COFs) via a pore engineering approach. We simultaneously engineer the pore geometry (generating concave dodecagonal nanopores) and pore surface (installing multiple functional groups such as -C=N-, -OH, -N=N- and -CF3 ) to improve the utilization efficiency and host-guest interaction of proton carriers, hence benefiting the enhancement of anhydrous proton conduction. Upon loading with H3 PO4 , COFs can realize a proton conductivity of 2.33×10-2  S cm-1 under anhydrous conditions, among the highest values of all COF materials. These materials demonstrate good stability and maintain high proton conductivity over a wide temperature range (80-160 °C). This work paves a new way for designing COFs for anhydrous proton conduction applications, which shows great potential as high-temperature proton exchange membranes.

3.
Angew Chem Int Ed Engl ; 62(8): e202217662, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585907

RESUMO

Two C2 H6 -selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C2 H6 /C2 H4 ) under humid conditions to produce polymer-grade pure C2 H4 . Experimental results reveal that these two MOFs not only adsorb a high amount of C2 H6 but also display good C2 H6 /C2 H4 selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C2 H6 /C2 H4 under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C2 H6 /C2 H4 under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.

4.
J Neurophysiol ; 128(6): 1383-1394, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321700

RESUMO

Chronic intermittent hypoxia (CIH), an animal model of sleep apnea, has been shown to alter the activity of second-order chemoreceptor neurons in the caudal nucleus of the solitary tract (cNTS). Although numerous studies have focused on excitatory plasticity, few studies have explored CIH-induced plasticity impacting inhibitory inputs to NTS neurons, and the roles of GABAergic and glycinergic inputs on heightened cNTS excitability following CIH are unknown. In addition, changes in astrocyte function may play a role in cNTS plasticity responses to CIH. This study tested the effects of a 7-day CIH protocol on miniature inhibitory postsynaptic currents (mIPSCs) in cNTS neurons receiving chemoreceptor afferents. Normoxia-treated rats primarily displayed GABA mIPSCs, whereas CIH-treated rats exhibited a shift toward combined GABA/glycine-mediated mIPSCs. CIH increased glycinergic mIPSC amplitude and area. This shift was not observed in dorsal motor nucleus of the vagus neurons or cNTS cells from females. Immunohistochemistry showed that strengthened glycinergic mIPSCs were associated with increased glycine receptor protein and were dependent on receptor trafficking in CIH-treated rats. In addition, CIH altered astrocyte morphology in the cNTS, and inactivation of astrocytes following CIH reduced glycine receptor-mediated mIPSC frequency and overall mIPSC amplitude. In cNTS, CIH produced changes in glycine signaling that appear to reflect increased trafficking of glycine receptors to the cell membrane. Increased glycine signaling in cNTS associated with CIH also appears to be dependent on astrocytes. Additional studies will be needed to determine how CIH influences glycine receptor expression and astrocyte function in cNTS.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH) has been used to mimic the hypoxemia associated with sleep apnea and determine how these hypoxemias influence neural function. The nucleus of the solitary tract is the main site for chemoreceptor input to the CNS, but how CIH influences NTS inhibition has not been determined. These studies show that CIH increases glycine-mediated miniature IPSCs through mechanisms that depend on protein trafficking and astrocyte activation.


Assuntos
Síndromes da Apneia do Sono , Núcleo Solitário , Ratos , Animais , Núcleo Solitário/metabolismo , Receptores de Glicina/metabolismo , Ratos Sprague-Dawley , Hipóxia , Glicina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Síndromes da Apneia do Sono/metabolismo , Inibição Neural/fisiologia
5.
Inorg Chem ; 60(16): 12129-12135, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310114

RESUMO

To date, numerous zirconium cluster-based metal-organic frameworks (Zr-MOFs) with attractive physical properties have been achieved thanks to tailorable organic linkers and versatile Zr clusters. Nevertheless, in comparison with the most-used high-symmetry organic linkers, low-symmetry linkers have rarely been exploited in the construction of Zr-MOFs. Despite challenges in predicting the structure and topology of the MOF, linker desymmetrization presents opportunities for the design of Zr-MOFs with unusual topologies and unexpected functionalities. Herein, we report for the first time the construction of two robust Zr-MOFs (IAM-7 and IAM-8) from two pyrrolo-pyrrole-based low-symmetry tetracarboxylate linkers with a rare rhombic shape. The low symmetry of the linkers arises from the asymmetric pyrrolo-pyrrole core and the varying branch lengths, which play a critical role in the structural diversity between IAM-7 and IAM-8 seen from the structural analysis and lead to hydrophilic channels that contain uncoordinated carboxylate groups in the structure of IAM-7. Furthermore, the proton conductivity of IAM-7 displays a high temperature and humidity dependence where the proton conductivity increases from 2.84 × 10-8 S cm-1 at 30 °C and 40% relative humidity (RH) to 1.42 × 10-2 S cm-1 at 90 °C and 95% RH, making it among one of the most conductive Zr-MOFs. This work not only enriches the library of Zr-MOFs but also offers a platform for the design of low-symmetry linkers toward the structural diversity or irregularity of MOFs as well as their structure-related properties.

6.
Inorg Chem ; 58(19): 12748-12755, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31497944

RESUMO

Presented herein is a group of highly stable Zr-based metal-organic frameworks with bowl-shaped dihydroanthracene-based tetratopic linkers as building blocks. Structural analysis reveals that these frameworks are all two-dimensional but comprise three distinct connectivities of Zr6 nodes. By using the steric hindrance of the nonplanar linker, the connectivity of Zr6 node can be tuned from 8-c to unusual 4-c. Further, through either one-pot synthesis or postsynthetic linker installation strategies, the connectivity of Zr6 node can be tuned from 8-c to 10-c by the insertion of a secondary linear dicarboxylate linker, from which not only the temperature-dependent flexibility of the structure can be effectively controlled with enhanced rigidity and thermal stability but also a scaffold for postsynthetic metalation of Pd(II) catalyst for Heck coupling reaction is offered.

7.
Inorg Chem ; 57(11): 6210-6213, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29774746

RESUMO

We present here the synthesis of one enantiomeric pair of metal-organic framework materials comprised of a unique multioriented double-helix structure from an achiral spirocenter ligand. Our study clearly shows that the chiral MOF material encompasses concurrently multiple nonlinear-optical functions in the solid state: the noncentrosymmetric structural feature brings the chiral MOF high second-harmonic-generation efficiency; the incorporation of the spirocenter ligand can efficiently produce two-photon-excited photoluminescence with a larger-action cross-sectional value.

8.
J Allergy Clin Immunol ; 130(4): 968-76.e3, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22704538

RESUMO

BACKGROUND: Drugs targeting individual G protein-coupled receptors are used as asthma therapies, but this strategy is limited because of G protein-coupled receptor signal redundancy. Regulator of G protein signaling 2 (RGS2), an intracellular selective inhibitor of multiple bronchoconstrictor receptors, may play a central role in the pathophysiology and treatment of asthma. OBJECTIVE: We defined functions and mechanisms of RGS2 in regulating airway hyperresponsiveness (AHR), the pathophysiologic hallmark of asthma. METHODS: Real-time PCR and Western blot were used to determine changes in RGS2 expression in ovalbumin-sensitized/-challenged mice. We also used immunohistochemistry and real-time PCR to compare RGS2 expression between human asthmatic and control subjects. The AHR of RGS2 knockout mice was assessed by using invasive tracheostomy and unrestrained plethysmography. Effects of loss of RGS2 on mouse airway smooth muscle (ASM) remodeling, contraction, intracellular Ca(2+), and mitogenic signaling were determined in vivo and in vitro. RESULTS: RGS2 was highly expressed in human and murine bronchial epithelium and ASM and was markedly downregulated in lungs of ovalbumin-sensitized/-challenged mice. Lung tissues and blood monocytes from asthma patients expressed significantly lower RGS2 protein (lung) and mRNA (monocytes) than from nonasthma subjects. The extent of reduction of RGS2 on human monocytes correlated with increased AHR. RGS2 knockout caused spontaneous AHR in mice. Loss of RGS2 augmented Ca(2+) mobilization and contraction of ASM cells. Loss of RGS2 also increased ASM mass and stimulated ASM cell growth via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. CONCLUSION: We identified RGS2 as a potent modulator of AHR and a potential novel therapeutic target for asthma.


Assuntos
Hiper-Reatividade Brônquica/etiologia , Proteínas RGS/imunologia , Proteínas RGS/fisiologia , Animais , Cálcio/metabolismo , Proliferação de Células , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/deficiência , Proteínas RGS/genética , Transdução de Sinais
9.
Am J Respir Cell Mol Biol ; 45(5): 1084-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21642591

RESUMO

Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-ß and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility.


Assuntos
Receptor alfa de Estrogênio/genética , Músculo Liso/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Asma/metabolismo , Estradiol/farmacologia , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/biossíntese , Regulação para Cima
10.
J Neurosci ; 29(48): 15277-85, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19955380

RESUMO

Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor. The hair bundle and tip links of hair cells are susceptible to acoustic trauma and ototoxic drugs. It has been shown that hair cells in lower vertebrates and in the mammalian vestibular system may survive bundle loss and undergo self-repair of the stereocilia. Our goals were to determine whether cochlear hair cells could survive the trauma and whether the tip link and/or the hair bundle could be regenerated. We simulated the acoustic trauma-induced tip link damage or stereociliary loss by disrupting tip links or ablating the hair bundles in the cultured organ of Corti from neonatal gerbils. Hair-cell fate and stereociliary morphology and function were examined using confocal and scanning electron microscopies and electrophysiology. Most bundleless hair cells survived and developed for approximately 2 weeks. However, no spontaneous hair-bundle regeneration was observed. When tip links were ruptured, repair of tip links and restoration of mechanotransduction were observed in <24 h. Our study suggests that the dynamic nature of the hair cell's transduction apparatus is retained despite the fact that regeneration of the hair bundle is lost in mammalian cochlear hair cells.


Assuntos
Cóclea/citologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Quelantes/farmacologia , Cílios/efeitos dos fármacos , Cílios/fisiologia , Cílios/ultraestrutura , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Gerbillinae , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/ultraestrutura , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp/métodos , Estimulação Física
11.
Nature ; 429(6993): 766-70, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15201911

RESUMO

Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.


Assuntos
Cóclea/citologia , Cóclea/fisiologia , Gerbillinae/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Cálcio/metabolismo , Cílios/fisiologia , Condutividade Elétrica , Potenciais da Membrana , Rotação , Vibração
12.
Nat Neurosci ; 8(8): 1028-34, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16041370

RESUMO

Mammalian hearing owes its remarkable sensitivity and frequency selectivity to a local mechanical feedback process within the cochlea. Cochlear outer hair cells (OHCs) function as the key elements in the feedback loop in which the fast somatic motility of OHCs is thought to be the source of cochlear amplification. An alternative view is that amplification arises from active hair-bundle movement, similar to that seen in nonmammalian hair cells. We measured voltage-evoked hair-bundle motions in the gerbil cochlea to determine if such movements were also present in mammalian OHCs. The OHCs showed bundle movement with peak responses of up to 830 nm. The movement was insensitive to manipulations that would normally block mechanotransduction in the stereocilia, and it was absent in neonatal OHCs and prestin-knockout OHCs. These findings suggest that the bundle movement originated in somatic motility and that somatic motility has a central role in cochlear amplification in mammals.


Assuntos
Cóclea/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Células Ciliadas Auditivas/fisiologia , Movimento (Física) , Animais , Estimulação Elétrica , Gerbillinae , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteínas Motores Moleculares , Técnicas de Patch-Clamp , Proteínas/genética
13.
J Neurosci ; 27(5): 1006-14, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17267554

RESUMO

Inner hair cells (IHCs) are the true sensory receptors in the cochlea; they transmit auditory information to the brain. IHCs respond to basilar membrane (BM) vibration by producing a transducer current through mechanotransducer (MET) channels located at the tip of their stereocilia when these are deflected. The IHC MET current has not been measured from adult animals. We simultaneously recorded IHC transducer currents and BM motion in a gerbil hemicochlea to examine relationships between these two variables and their variation along the cochlear length. Results show that although maximum transducer currents of IHCs are uniform along the cochlea, their operating range is graded and is narrower in the base. The MET current displays adaptation, which along with response magnitude depends on extracellular calcium concentration. The rate of adaptation is invariant along the cochlear length. We introduce a new method of measuring adaptation using sinusoidal stimuli. There is a phase lead of IHC transducer currents relative to sinusoidal BM displacement, reflecting viscoelastic coupling of their cilia and their adaptation process.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Mecanotransdução Celular/fisiologia , Envelhecimento/fisiologia , Animais , Gerbillinae , Estimulação Física/métodos , Vibração
14.
Brain Res ; 1210: 20-8, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18417103

RESUMO

Glucose transporter 5 (Glut5) is a high-affinity fructose transporter. It was proposed to be a motor protein or part of the motor complex required for cochlear amplification in outer hair cells (OHCs). Here we show that, in contrast to previous reports, Glut5 is undetectable, and possibly absent, in OHCs harvested from wildtype mice. Further, Glut5-deficient mice display normal OHC morphology and motor function (i.e., nonlinear capacitance and electromotility) and normal cochlear sensitivity and frequency selectivity. We conclude that Glut5 is not required for OHC motility or cochlear amplification.


Assuntos
Movimento Celular/fisiologia , Cóclea/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Animais , Células Cultivadas , Quimera , Cílios/metabolismo , Cílios/ultraestrutura , Cóclea/ultraestrutura , Metabolismo Energético/genética , Frutose/metabolismo , Transportador de Glucose Tipo 5 , Células Ciliadas Auditivas Externas/ultraestrutura , Audição/fisiologia , Masculino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , RNA Mensageiro/metabolismo , Células-Tronco , Testículo/metabolismo , Testículo/ultraestrutura
15.
Front Cell Neurosci ; 12: 73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662441

RESUMO

The senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Hair cells transduce mechanical stimuli into electrical activity. Loss of hair cells as a result of aging or exposure to noise and ototoxic drugs is the major cause of noncongenital hearing and balance deficits. In the ear of non-mammals, lost hair cells can spontaneously be replaced by production of new hair cells from conversion of supporting cells. Although supporting cells in adult mammals have lost that capability, neonatal supporting cells are able to convert to hair cells after inhibition of Notch signaling. We questioned whether Notch inhibition is sufficient to convert supporting cells to functional hair cells using electrophysiology and electron microscopy. We showed that pharmacological inhibition of the canonical Notch pathway in the cultured organ of Corti prepared from neonatal gerbils induced stereocilia formation in supporting cells (defined as hair cell-like cells or HCLCs) and supernumerary stereocilia in hair cells. The newly emerged stereocilia bundles of HCLCs were functional, i.e., able to respond to mechanical stimulation with mechanotransduction (MET) current. Transmission electron microscopy (TEM) showed that HCLCs converted from pillar cells maintained the pillar cell shape and that subsurface cisternae, normally observed underneath the cytoskeleton in outer hair cells (OHCs), was not present in Deiters' cells-derived HCLCs. Voltage-clamp recordings showed that whole-cell currents from Deiters' cells-derived HCLCs retained the same kinetics and magnitude seen in normal Deiters' cells and that nonlinear capacitance (NLC), an electrical hallmark of OHC electromotility, was not detected from any HCLCs measured. Taken together, these results suggest that while Notch inhibition is sufficient for promoting stereocilia bundle formation, it is insufficient to convert neonatal supporting cells to mature hair cells. The fact that Notch inhibition led to stereocilia formation in supporting cells and supernumerary stereocilia in existing hair cells appears to suggest that Notch signaling may regulate stereocilia formation and stability during development.

16.
Hear Res ; 234(1-2): 52-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17964097

RESUMO

The cochlear outer hair cell (OHC), which plays a crucial role in mammalian hearing through its unique voltage-dependent motility, has been established as a primary target of the ototoxicity of aminoglycoside antibiotics. These polycationic drugs are also known to block a wide variety of ion channels, purinergic ionotropic channels, and nicotinic ACh receptors in hair cells in vitro. The OHC motor protein, prestin, is a voltage-sensitive transmembrane protein containing several negatively charged residues on both intra- and extracellular surface. The acidic sites may be susceptible to polycationic-charged aminoglycoside binding, which may result in disruption of motility. We attempted to examine whether aminoglycosides such as streptomycin and gentamicin could affect OHC motility and its electrical signature, the nonlinear capacitance (NLC) in adult gerbil OHCs. Somatic motility and NLC were measured under the whole-cell voltage-clamp mode. Streptomycin and gentamicin were applied extracellularly or intracellularly. Results show that streptomycin and gentamicin did not change either the magnitude of motility or the NLC. Theses results suggest that, although streptomycin and gentamicin can block mechanotransduction channels as well as ACh receptors in hair cells, they have no direct affect on OHC somatic motility.


Assuntos
Antibacterianos/toxicidade , Movimento Celular/efeitos dos fármacos , Gentamicinas/toxicidade , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Estreptomicina/toxicidade , Animais , Capacitância Elétrica , Gerbillinae , Técnicas In Vitro , Técnicas de Patch-Clamp , Fatores de Tempo
17.
Sci Rep ; 7(1): 5075, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698564

RESUMO

The molecular components of store-operated Ca2+ influx channels (SOCs) in proliferative and migratory vascular smooth muscle cells (VSMCs) are quite intricate with many channels contributing to SOCs. They include the Ca2+-selective Orai1 and members of the transient receptor potential canonical (TRPC) channels, which are activated by the endoplasmic reticulum Ca2+ sensor STIM1. The scaffolding protein Homer assembles SOC complexes, but its role in VSMCs is not well understood. Here, we asked whether these SOC components and Homer1 are present in the same complex in VSMCs and how Homer1 contributes to VSMC SOCs, proliferation, and migration leading to neointima formation. Homer1 expression levels are upregulated in balloon-injured vs. uninjured VSMCs. Coimmunoprecipitation assays revealed the presence and interaction of all SOC components in the injured VSMCs, where Homer1 interacts with Orai1 and various TRPC channels. Accordingly, knockdown of Homer1 in cultured VSMCs partially inhibited SOCs, VSMC migration, and VSMC proliferation. Neointimal area was reduced after treatment with an adeno-associated viral vector expressing a short hairpin RNA against Homer1 mRNA (AAV-shHomer1). These findings stress the role of multiple Ca2+ influx channels in VSMCs and are the first to show the role of Homer proteins in VSMCs and its importance in neointima formation.


Assuntos
Movimento Celular , Proteínas de Arcabouço Homer/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/patologia , Proteína ORAI1/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sinalização do Cálcio , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Técnicas de Silenciamento de Genes , Masculino , Ligação Proteica , Ratos Sprague-Dawley
18.
Zhongguo Zhong Yao Za Zhi ; 31(15): 1244-7, 2006 Aug.
Artigo em Zh | MEDLINE | ID: mdl-17048567

RESUMO

OBJECTIVE: To investigate the triterpenoids from root of Achyranthes bidentata in Henan. METHOD: Sephadex, normal-and reversed-phase column chromatographies were applied for the isolation and purification. The structure determinations were performed by means of physiochemical properties, MS and NMR data analyses. RESULT: Seven compounds were isolated from the water soluble fraction in root of A. bidentata, and determined as achyranthoside A (1), achyranthoside E (2), momordin Ib (3), chikusetsusaponin IVa (4), chikusetsusaponin IVa methyl ester (5), chikusetsusaponin V (6), chikusetsusaponin V methyl ester (7). CONCLUSION: Compounds 1 and 2 were isolated from the natural resources for the first time.


Assuntos
Achyranthes/química , Ácido Oleanólico/análogos & derivados , Plantas Medicinais/química , Saponinas/isolamento & purificação , Conformação Molecular , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Raízes de Plantas/química , Saponinas/química
19.
J Neurosci ; 23(27): 9089-96, 2003 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-14534242

RESUMO

The outer hair cell (OHC) lateral wall is a unique trilaminate structure consisting of the plasma membrane, the cortical lattice, and subsurface cisternae. OHCs are capable of altering their length in response to transmembrane voltage change. This so-called electromotile response is presumed to result from conformational changes of membrane-bound protein molecules, named prestin. OHC motility is accompanied by axial stiffness changes when the membrane potential of the cell is altered. During length changes, intracellular anions (mainly Cl-) act as extrinsic voltage sensors. In this study, we inquired whether the motor proteins are responsible for the voltage-dependent axial stiffness of OHCs, and whether ACh, the neurotransmitter of efferent neurons, modulates the stiffness of the cortical lattice and/or the stiffness of the motor protein. The experiments were done on isolated guinea pig OHCs in the whole-cell voltage-clamp mode. Axial stiffness was determined by loading a fiber of known stiffness onto the apical surface of the cells. Voltage-dependent stiffness and cell motility disappeared, and the axial stiffness of the cells significantly decreased after removal of intracellular Cl-. The result suggests that the stiffness of the motor protein is a major contributor to the global axial stiffness of OHCs. ACh was found to affect both the motor protein and other lateral wall stiffness components.


Assuntos
Células Ciliadas Auditivas Externas/fisiologia , Proteínas/metabolismo , Acetilcolina/farmacologia , Animais , Fenômenos Biomecânicos , Biofísica/métodos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Separação Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/fisiologia , Estimulação Elétrica , Cobaias , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Técnicas In Vitro , Proteínas Motores Moleculares/efeitos dos fármacos , Proteínas Motores Moleculares/fisiologia , Técnicas de Patch-Clamp
20.
Hear Res ; 175(1-2): 183-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12527137

RESUMO

The outer hair cell (OHC), one of two receptor cell types in the organ of Corti, plays a critical role in mammalian hearing. OHCs enhance basilar membrane motion through a local mechanical feedback process within the cochlea, termed the 'cochlear amplifier'. It is generally believed that the basis of cochlear amplification is a voltage-dependent electromotile response of OHCs. Measurements of electromotility in developing animals indicate that the onset of motility normally occurs around 7 days after birth in altricial rodents such as gerbils and rats. Thyroid hormone (TH) plays a crucial role in the development of the auditory system. Deficiency of the hormone between the late embryonic stage and the second postnatal week can cause severe hearing loss. Several studies suggest that TH deficiency might also affect the development of the cochlear amplifier. The goal of this study was therefore to examine whether TH was necessary for the development of OHC motility. The organ of Corti of gerbils was dissected out at birth and grown in culture with defined concentration of triiodothyronine (T3), the active ligand for the TH receptor. Motility was measured from OHCs isolated from 7-, 11- and 14-day-old cultures. Motility did indeed develop in OHCs deprived of normal concentration of T3. This suggests that the defective auditory function seen in TH-deficient animals is most likely due to morphological and physiological changes in the cochlea, rather than the motor function of the OHCs.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Células Ciliadas Auditivas Externas/fisiologia , Tri-Iodotironina/fisiologia , Envelhecimento/fisiologia , Animais , Movimento Celular/fisiologia , Senescência Celular/fisiologia , Técnicas de Cultura , Eletrofisiologia , Gerbillinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA