Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Angew Chem Int Ed Engl ; 63(39): e202318038, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38881526

RESUMO

A thin liquid film spread over the inner surface of a rapidly rotating vial creates an aerodynamic cushion on which one or multiple droplets of various liquids can levitate stably for days or even weeks. These levitating droplets can serve as wall-less ("airware") chemical reactors that can be merged without touching-by remote impulses-to initiate reactions or sequences of reactions at scales down to hundreds of nanomoles. Moreover, under external electric fields, the droplets can act as the world's smallest chemical printers, shedding regular trains of pL or even fL microdrops. In one modality, the levitating droplets operate as completely wireless aliquoting/titrating systems delivering pg quantities of reagents into the liquid in the rotating vial; in another modality, they print microdroplet arrays onto target surfaces. The "airware", levitated reactors are inexpensive to set up, remarkably stable to external disturbances and, for printing applications, require operating voltages much lower than in electrospray, electrowetting, or ink jet systems.

2.
Mol Psychiatry ; 25(4): 831-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30635639

RESUMO

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Genetic risk variants strongly associated with expression of SNX19 transcript features that tag multiple rare classes of SNX19 transcripts, whereas they only weakly affected expression of an exon-exon junction that tags the majority of abundant transcripts. The most prominent class of SNX19 risk-associated transcripts is predicted to be overexpressed, defined by an exon-exon splice junction between exons 8 and 10 (junc8.10) and that is predicted to encode proteins that lack the characteristic nexin C terminal domain. Risk alleles were also associated with either increased or decreased expression of multiple additional classes of transcripts. With RACE, molecular cloning, and long read sequencing, we found a number of novel SNX19 transcripts that further define the set of potential etiological transcripts. We explored epigenetic regulation of SNX19 expression and found that DNA methylation at CpG sites near the primary transcription start site and within exon 2 partially mediate the effects of risk variants on risk-associated expression. ATAC sequencing revealed that some of the most strongly risk-associated SNPs are located within a region of open chromatin, suggesting a nearby regulatory element is involved. These findings indicate a potentially complex molecular etiology, in which risk alleles for schizophrenia generate epigenetic alterations and dysregulation of multiple classes of SNX19 transcripts.


Assuntos
Esquizofrenia/genética , Nexinas de Classificação/genética , Adulto , Alelos , Autopsia , Encéfalo/metabolismo , Cromatina/metabolismo , Mapeamento Cromossômico/métodos , Metilação de DNA , Éxons/genética , Feminino , Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fatores de Risco , Nexinas de Classificação/metabolismo
3.
Mol Psychiatry ; 25(1): 206-229, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570775

RESUMO

Increased expression of the 3.1 isoform of the KCNH2 potassium channel has been associated with cognitive dysfunction and with schizophrenia, yet little is known about the underlying pathophysiological mechanisms. Here, by using in vivo wireless local field potential recordings during working memory processing, in vitro brain slice whole-cell patching recordings and in vivo stereotaxic hippocampal injection of AAV-encoded expression, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and functional connectivity associated with reductions of SERPING1, CFH, and CD74 in the KCNH2-3.1 overexpression transgenic mice. The differentially expressed genes in mice are enriched in neurons and microglia, and reduced expression of these genes dysregulates the complement cascade, which has been previously linked to synaptic plasticity. We find that knockdown of these genes in primary neuronal-microglial cocultures from KCNH2-3.1 mice impairs synapse formation, and replenishing reduced CFH gene expression rescues KCNH2-3.1-induced impaired synaptogenesis. Translating to humans, we find analogous dysfunctional interactions between hippocampus and prefrontal cortex in coupling of the fMRI blood oxygen level-dependent (BOLD) signal during working memory in healthy subjects carrying alleles associated with increased KCNH2-3.1 expression in brain. Our data uncover a previously unrecognized role of the truncated KCNH2-3.1 potassium channel in mediating complement activation, which may explain its association with altered hippocampal-prefrontal connectivity and synaptic function. These results provide a potential molecular link between increased KCNH2-3.1 expression, synapse alterations, and hippocampal-prefrontal circuit abnormalities implicated in schizophrenia.


Assuntos
Ativação do Complemento/fisiologia , Canal de Potássio ERG1/metabolismo , Memória de Curto Prazo/fisiologia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Ativação do Complemento/imunologia , Canal de Potássio ERG1/genética , Feminino , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transmissão Sináptica/fisiologia , Lobo Temporal/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(27): 7130-7135, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634288

RESUMO

RNA sequencing (RNA-seq) is a powerful approach for measuring gene expression levels in cells and tissues, but it relies on high-quality RNA. We demonstrate here that statistical adjustment using existing quality measures largely fails to remove the effects of RNA degradation when RNA quality associates with the outcome of interest. Using RNA-seq data from molecular degradation experiments of human primary tissues, we introduce a method-quality surrogate variable analysis (qSVA)-as a framework for estimating and removing the confounding effect of RNA quality in differential expression analysis. We show that this approach results in greatly improved replication rates (>3×) across two large independent postmortem human brain studies of schizophrenia and also removes potential RNA quality biases in earlier published work that compared expression levels of different brain regions and other diagnostic groups. Our approach can therefore improve the interpretation of differential expression analysis of transcriptomic data from human tissue.


Assuntos
RNA/análise , Análise de Sequência de RNA/métodos , Algoritmos , Animais , Biologia Computacional , Replicação do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Substância Cinzenta , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcriptoma
5.
PLoS Genet ; 12(2): e1005819, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26913521

RESUMO

Differentiating pluripotent cells from fibroblast progenitors is a potentially transformative tool in personalized medicine. We previously identified relatively greater success culturing dura-derived fibroblasts than scalp-derived fibroblasts from postmortem tissue. We hypothesized that these differences in culture success were related to epigenetic differences between the cultured fibroblasts by sampling location, and therefore generated genome-wide DNA methylation and transcriptome data on 11 intrinsically matched pairs of dural and scalp fibroblasts from donors across the lifespan (infant to 85 years). While these cultured fibroblasts were several generations removed from the primary tissue and morphologically indistinguishable, we found widespread epigenetic differences by sampling location at the single CpG (N = 101,989), region (N = 697), "block" (N = 243), and global spatial scales suggesting a strong epigenetic memory of original fibroblast location. Furthermore, many of these epigenetic differences manifested in the transcriptome, particularly at the region-level. We further identified 7,265 CpGs and 11 regions showing significant epigenetic memory related to the age of the donor, as well as an overall increased epigenetic variability, preferentially in scalp-derived fibroblasts-83% of loci were more variable in scalp, hypothesized to result from cumulative exposure to environmental stimuli in the primary tissue. By integrating publicly available DNA methylation datasets on individual cell populations in blood and brain, we identified significantly increased inter-individual variability in our scalp- and other skin-derived fibroblasts on a similar scale as epigenetic differences between different lineages of blood cells. Lastly, these epigenetic differences did not appear to be driven by somatic mutation--while we identified 64 probable de-novo variants across the 11 subjects, there was no association between mutation burden and age of the donor (p = 0.71). These results depict a strong component of epigenetic memory in cell culture from primary tissue, even after several generations of daughter cells, related to cell state and donor age.


Assuntos
Epigênese Genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Criança , Pré-Escolar , Ilhas de CpG , Metilação de DNA , Humanos , Lactente , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Couro Cabeludo/citologia , Transcriptoma , Adulto Jovem
6.
Electrophoresis ; 39(4): 597-607, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29115688

RESUMO

We report herein a novel microfluidic particle concentrator that utilizes constriction microchannels to enhance the flow-focusing performance of induced-charge electroosmosis (ICEO), where viscous hemi-spherical oil droplets are embedded within the mainchannel to form deformable converging-diverging constriction structures. The constriction region between symmetric oil droplets partially coated on the electrode strips can improve the focusing performance by inducing a granular wake flow area at the diverging channel, which makes almost all of the scattered sample particles trapped within a narrow stream on the floating electrode. Another asymmetric droplet pair arranged near the outlets can further direct the trajectory of focused particle stream to one specified outlet port depending on the symmetry breaking in the shape of opposing phase interfaces. By fully exploiting rectification properties of induced-charge electrokinetic phenomena at immiscible water/oil interfaces of tunable geometry, the expected function of continuous and switchable flow-focusing is demonstrated by preconcentrating both inorganic silica particles and biological yeast cells. Physical mechanisms responsible for particle focusing and locus deflection in the droplet-assisted concentrentor are analyzed in detail, and simulation results are in good accordance with experimental observations. Our work provides new routes to construct flexible electrokinetic framework for preprocessing on-chip biological samples before performing subsequent analysis.


Assuntos
Eletro-Osmose/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Dióxido de Silício , Leveduras/citologia
7.
Toxicol Appl Pharmacol ; 357: 70-79, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30130555

RESUMO

Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L-/-) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.


Assuntos
Arsenitos/toxicidade , Fibroblastos/efeitos dos fármacos , Histonas/metabolismo , Compostos de Sódio/toxicidade , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Semelhante a Kruppel , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
8.
Anal Chem ; 89(17): 9583-9592, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28783330

RESUMO

Continuous dielectrophoretic separation is recognized as a powerful technique for a large number of applications including early stage cancer diagnosis, water quality analysis, and stem-cell-based therapy. Generally, the prefocusing of a particle mixture into a stream is an essential process to ensure all particles are subjected to the same electric field geometry in the separation region. However, accomplishing this focusing process either requires hydrodynamic squeezing, which requires an encumbering peripheral system and a complicated operation to drive and control the fluid motion, or depends on dielectrophoretic forces, which are highly sensitive to the dielectric characterization of particles. An alternative focusing technique, induced charge electro-osmosis (ICEO), has been demonstrated to be effective in focusing an incoming mixture into a particle stream as well as nonselective regarding the particles of interest. Encouraged by these aspects, we propose a hybrid method for microparticle separation based on a delicate combination of ICEO focusing and dielectrophoretic deflection. This method involves two steps: focusing the mixture into a thin particle stream via ICEO vortex flow and separating the particles of differing dielectic properties through dielectrophoresis. To demonstrate the feasibility of the method proposed, we designed and fabricated a microfluidic chip and separated a mixture consisting of yeast cells and silica particles with an efficiency exceeding 96%. This method has good potential for flexible integration into other microfluidic chips in the future.

9.
Small ; 13(46)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044912

RESUMO

Advances in microfluidic emulsification have enabled the generation of exquisite multiple-core droplets, which are promising structures to accommodate microreactions. An essential requirement for conducting reactions is the sequential coalescence of the multiple cores encapsulated within these droplets, therefore, mixing the reagents together in a controlled sequence. Here, a microfluidic approach is reported for the conduction of two-step microreactions by electrically fusing three cores inside double-emulsion droplets. Using a microcapillary glass device, monodisperse water-in-oil-in-water droplets are fabricated with three compartmented reagents encapsulated inside. An AC electric field is then applied through a polydimethylsiloxane chip to trigger the sequential mixing of the reagents, where the precise sequence is guaranteed by the discrepancy of the volume or conductivity of the inner cores. A two-step reaction in each droplet is ensured by two times of core coalescence, which totally takes 20-40 s depending on varying conditions. The optimal parameters of the AC signal for the sequential fusion of the inner droplets are identified. Moreover, the capability of this technique is demonstrated by conducting an enzyme-catalyzed reaction used for glucose detection with the double-emulsion droplets. This technique should benefit a wide range of applications that require multistep reactions in micrometer scale.

10.
Electrophoresis ; 37(10): 1326-36, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26914414

RESUMO

By increasing the number of floating electrodes or enlarging the width of single floating electrode, this work provides effective ways to strongly improve the particle trapping performance of induced charge electroosmosis (ICEO). Particle trapping with double or triple separate narrow floating electrodes increases the effective actuating range of ICEO flow and therefore enhance the optimum trapping ability to be 1.63 or 2.34 times of that with single narrow electrode (width of L=200µm), and the ideal trapping frequency is independent of the electrode number due to the mutual independence of electrochemical ion relaxation over each electrode. Furthermore, using a single wide floating electrode with the effective width equal to three separate narrow floating electrodes (L=600µm) instead of a single narrow one slightly lowers the ideal trapping frequency due to an increase in the characteristic polarization length, but the trapping performance is only up to 1.59 times of that with original single narrow electrode, implying that vertical channel confinement effect may severely suppresses the effective actuating range of ICEO flow and renders the trapping performance not as expected. Trapping experiments over wide floating electrode with different channel height were carried out, showing that the trapping performance increases by correctly increasing the channel height.


Assuntos
Eletro-Osmose/métodos , Leveduras/isolamento & purificação , Sobrevivência Celular , Eletrodos , Eletroforese/métodos , Dispositivos Lab-On-A-Chip , Modelos Teóricos , Compostos de Estanho
11.
Electrophoresis ; 36(15): 1744-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25962351

RESUMO

This paper reports a microfluidic separation device combining 3D electrodes and vaulted obstacles to continuously separate particles experiencing strong positive dielectrophoresis (DEP) from particles experiencing weak positive DEP, or from particles experiencing negative DEP. The separation is achieved by first focusing the particle mixture into a narrow stream by a hydrodynamic focusing flow, and then deviating them into different outlets by AC DEP. The vaulted obstacles facilitate the separation by both increasing the non-uniformity of the electric field, and influencing the particles to move in regions strongly affected by DEP. The 3D electrodes give rise to a spatially non-uniform electric field and extend DEP effect to the channel height. Numerical simulations are performed to investigate the effects of the obstacles on electric field distribution and particle trajectories so as to optimize the obstacle height and compare with the experimental results. The performance of the device is assessed by separating 25 µm gold-coated particles from 10 µm particles in different flow rates by positive DEP and negative DEP, and also separating 25 µm gold-coated particles from yeast cells using only positive DEP. The experimental observation shows a reasonable agreement with numerical simulation results.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Simulação por Computador , Eletrodos , Desenho de Equipamento , Temperatura Alta , Leveduras/citologia , Leveduras/isolamento & purificação
12.
Soft Matter ; 11(41): 8105-12, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26332897

RESUMO

We propose a novel low-frequency strategy to trap 10 µm colloidal polystyrene (PS) particles of small buoyancy velocity on the surface of a floating electrode, on the basis of combined induced-charge electroosmotic (ICEO) flow and dipole-dipole chaining phenomenon. For field frequencies of 5-50 Hz, much lower than the reciprocal RC time scale, double-layer polarization makes electric field lines pass around the 'insulating' surface of the ideally polarizable floating electrode. Once the long-range ICEO convective micro-vortexes transport particles quickly from the bulk fluid to the electrode surface, neighbouring particles aligned along the local horizontal electric field attract one another by attractive dipolar interactions, and form arrays of particle chains that are almost parallel with the applied electric field. Most importantly, this low-frequency trapping method takes advantage of the dielectrophoretic (DEP) particle-particle interaction to enhance the downward buoyancy force of this dipolar chaining assembly structure, in order to overcome the upward ICEO fluidic drag and realize stable particle trapping around the flow stagnation region. For the sake of comparison, the field frequency is further raised far above the DC limit. At the intermediate frequencies of 200 Hz-2 kHz, this trapping method fails to work, since the normal electric field component emanates from the conducting electrode surface. Besides, at high field frequencies (>3 kHz), particles can be once again effectively trapped at the electrode center, though with a compact (3 kHz) or disordered (10 kHz) 2D packing state on the electrode surface and mainly governed by the short-range negative DEP force field, resulting in requiring a much longer trapping time. To gain a better interpretation of the various particle behaviours observed in experiments, we develop a theoretical framework that takes into account both Maxwell-Wagner interfacial charge relaxation at the particle/electrolyte interface and the field-induced double-layer polarization at the electrode/electrolyte interface, and apply it to quantify the particle-particle electrokinetic interactions. With this simple geometrical configuration of a floating electrode, our results provide a new way to realize trapping of colloidal particles with a small buoyancy velocity under the combined action of ICEO flow and an attractive dipole-dipole interaction.

13.
Hematology ; 27(1): 263-273, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35192776

RESUMO

BACKGROUND: The reactivation of fetal γ-globin expression is an effective strategy for ameliorating the clinical symptoms of ß-hemoglobinopathies. However, the mechanism of globin switching, especially the roles of long non-coding RNAs (lncRNAs) in this process, remains elusive. METHODS: We compared the in vivo transcriptome profiles of nucleated red blood cells (NRBCs) isolated from the umbilical cord blood of preterm and full-term newborns. We collected 75 umbilical cord blood samples and performed qPCR of the candidate genes. RESULTS: In this study, we identified 7,166 differentially expressed protein-coding genes, 3,243 differentially expressed lncRNAs, and 79 differentially expressed microRNAs. Our data show that the Fanconi anemia pathway and the H19/let-7/LIN28B axis may be involved in γ- to ß-globin gene switching. Moreover, we constructed the hub gene network of the differentially expressed transcription factors. Based on qPCR, we found that BCL11A was differentially expressed based on biological sex. We also confirmed that H19 is differentially expressed and established the H19-related network to reveal the potential regulatory mechanisms. CONCLUSION: We present the profiles of the in vivo transcriptome differences of NRBCs between preterm and full-term neonates for the first time, and provide novel research targets for ß-hemoglobinopathies.


Assuntos
Eritrócitos/metabolismo , Sangue Fetal/metabolismo , Transcriptoma/imunologia , Feminino , Sangue Fetal/citologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Gravidez
14.
Front Endocrinol (Lausanne) ; 12: 747646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745012

RESUMO

Obesity, especially central obesity, is a strong risk factor for developing type 2 diabetes (T2D). However, the mechanism underlying the progression from central obesity to T2D remains unknown. Therefore, we analyzed the gut microbial profiles of central obese individuals with or without T2D from a Chinese population. Here we reported both the microbial compositional and gene functional alterations during the progression from central obesity to T2D. Several opportunistic pathogens were enriched in obese T2D patients. We also characterized thousands of genes involved in sugar and amino acid metabolism whose abundance were significantly depleted in obese T2D group. Moreover, the abundance of those genes was negatively associated with plasma glycemia level and percentage of individuals with impaired plasma glucose status. Therefore, our study indicates that the abundance of those depleted genes can be used as a potential biomarker to identify central obese individuals with high risks of developing T2D.


Assuntos
Metabolismo dos Carboidratos/genética , Diabetes Mellitus Tipo 2/etiologia , Microbioma Gastrointestinal/genética , Obesidade Abdominal/microbiologia , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , China , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Metagenoma/fisiologia , Obesidade Abdominal/genética , Obesidade Abdominal/metabolismo , Obesidade Abdominal/patologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Fatores de Risco , Transcriptoma
15.
BMC Bioinformatics ; 11: 227, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20441598

RESUMO

BACKGROUND: High-throughput DNA methylation arrays are likely to accelerate the pace of methylation biomarker discovery for a wide variety of diseases. A potential problem with a standard set of probes measuring the methylation status of CpG sites across the whole genome is that many sites may not show inter-individual methylation variation among the biosamples for the disease outcome being studied. Inclusion of these so-called "non-variable sites" will increase the risk of false discoveries and reduce statistical power to detect biologically relevant methylation markers. RESULTS: We propose a method to estimate the proportion of non-variable CpG sites and eliminate those sites from further analyses. Our method is illustrated using data obtained by hybridizing DNA extracted from the peripheral blood mononuclear cells of 311 samples to an array assaying 1505 CpG sites. Results showed that a large proportion of the CpG sites did not show inter-individual variation in methylation. CONCLUSIONS: Our method resulted in a substantial improvement in association signals between methylation sites and outcome variables while controlling the false discovery rate at the same level.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , DNA/genética , Perfilação da Expressão Gênica/métodos , Modelos Estatísticos , Humanos
16.
Micromachines (Basel) ; 11(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348930

RESUMO

Microfluidic technologies have enabled generation of exquisite multiple emulsion droplets, which have been used in many fields, including single-cell assays, micro-sized chemical reactions, and material syntheses. Electrical controlling is an important technique for droplet manipulation in microfluidic systems, but the dielectrophoretic behaviors of multiple emulsion droplets in electrical fields are rarely studied. Here, we report on the dielectrophoresis response of double emulsion droplets in AC electric fields in microfluidic channel. A core-shell model is utilized for analyzing the polarization of droplet interfaces and the overall dielectrophoresis (DEP) force. The water-in-oil-in-water droplets, generated by glass capillary devices, experience negative DEP at low field frequency. At high frequency, however, the polarity of DEP is tunable by adjusting droplet shell thickness or core conductivity. Then, the behavior of droplets with two inner cores is investigated, where the droplets undergo rotation before being repelled or attracted by the strong field area. This work should benefit a wide range of applications that require manipulation of double emulsion droplets by electric fields.

17.
Genome Biol ; 20(1): 196, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31554518

RESUMO

BACKGROUND: DNA methylation (DNAm) is a critical regulator of both development and cellular identity and shows unique patterns in neurons. To better characterize maturational changes in DNAm patterns in these cells, we profile the DNAm landscape at single-base resolution across the first two decades of human neocortical development in NeuN+ neurons using whole-genome bisulfite sequencing and compare them to non-neurons (primarily glia) and prenatal homogenate cortex. RESULTS: We show that DNAm changes more dramatically during the first 5 years of postnatal life than during the entire remaining period. We further refine global patterns of increasingly divergent neuronal CpG and CpH methylation (mCpG and mCpH) into six developmental trajectories and find that in contrast to genome-wide patterns, neighboring mCpG and mCpH levels within these regions are highly correlated. We integrate paired RNA-seq data and identify putative regulation of hundreds of transcripts and their splicing events exclusively by mCpH levels, independently from mCpG levels, across this period. We finally explore the relationship between DNAm patterns and development of brain-related phenotypes and find enriched heritability for many phenotypes within identified DNAm features. CONCLUSIONS: By profiling DNAm changes in NeuN-sorted neurons over the span of human cortical development, we identify novel, dynamic regions of DNAm that would be masked in homogenate DNAm data; expand on the relationship between CpG methylation, CpH methylation, and gene expression; and find enrichment particularly for neuropsychiatric diseases in genomic regions with cell type-specific, developmentally dynamic DNAm patterns.


Assuntos
Encéfalo/crescimento & desenvolvimento , Metilação de DNA , Neurônios/metabolismo , Adolescente , Encéfalo/embriologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Criança , Pré-Escolar , Ilhas de CpG , Expressão Gênica , Genômica , Humanos , Lactente , Recém-Nascido , Plasticidade Neuronal , Isoformas de RNA/química , Isoformas de RNA/metabolismo , Splicing de RNA , Adulto Jovem
18.
ACS Appl Mater Interfaces ; 10(46): 40228-40237, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30362341

RESUMO

Microfiber modules with controllable lengths emerged as novel biomimetic platforms and are significant for many tissue engineering applications. However, accurately controlling the length of microfibers on the scale of millimeter or even micrometer still remains challenging. Here, a novel and scalable strategy to generate microfiber modules with precisely tunable lengths ranging from 100 to 3500 µm via an alternating current (AC) electric field is presented. To control the microfiber length, double-emulsion droplets containing a chelating agent (sodium citrate) as a spacing node are first uniformly embedded in the microfibers in a controllable spatial arrangement. This process is precisely tuned by adjusting the flow rates, thus, tailoring the resulting multicompartmental microfiber structure. Next, an AC voltage signal is used to trigger the electric field-induced cutting process, where the time-averaged electrical force acting on the induced bipolar charge from the Maxwell-Wagner structural polarization mechanism breaks the stress balance at the interfaces, rupturing the double-emulsion droplets, and resulting in the burst release of the encapsulated chelating agents into the hydrogel cavity. The outer hydrogel shell is quickly dissolved by a chemical reaction, cutting the long fiber into a series of microfiber units of given length. Furthermore, adding magnetic nanoparticles endows magnetic functionality with these microfiber modules, which are allowed to serve as micromotors and building blocks. This electro-induced cutting method provides a facile strategy for the fabrication of microfibers with desired lengths, showing considerable promise for various chemical and biological applications.

19.
Gene Regul Syst Bio ; 12: 1177625018774798, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785087

RESUMO

The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach.

20.
Lab Chip ; 18(7): 1121-1129, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29536065

RESUMO

Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA