RESUMO
Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.
Assuntos
Aedes , Receptores Acoplados a Proteínas G , Animais , Aedes/metabolismo , Aedes/genética , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células CHO , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Cricetulus , Comportamento Alimentar/fisiologia , Mosquitos VetoresRESUMO
Arylalkylamine N-acetyltransferase (aaNAT) is a crucial enzyme that catalyses the transfer of acetyl groups from acetyl coenzyme A to arylalkylamines and arylamines. Evolutionary studies have identified a distinct class of aaNATs specific to mosquitoes, yet their functions remain elusive. This study focuses on Ae-aaNAT7, a mosquito-unique gene in Aedes aegypti (Diptera:Culicidae), to explore its functionality. Temporal and spatial expression analysis of Ae-aaNAT7 mRNA revealed high expression during embryonic development and in first-instar larvae, with notable expression in the limbs of adult mosquitoes based on tissue expression profiling. By further employing CRISPR/Cas9 technology for loss-of-function studies, our investigation revealed a reduction in the area of white spotting in the limbs of Ae-aaNAT7 mutant adult mosquitoes. Further investigation revealed a significant decrease in the fecundity and hatchability of the mutants. Dissection of the ovaries from Ae-aaNAT7 heterozygous mutants showed a noticeable reduction in the oocyte area compared with wild type. Dissection of the exochorion of the eggs from Ae-aaNAT7 homozygous mutants consistently revealed a striking absence of mature embryos. In addition, RNA interference experiments targeting Ae-aaNAT7 in males resulted in a reduction in fecundity, but no effect on hatchability was observed. These collective insights underscore the substantial impact of Ae-aaNAT7 on reproduction and its pivotal contribution to adult limb pigmentation in Ae. aegypti. These revelations offer insights pivotal for the strategic design of future insecticide targets.
RESUMO
This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.