Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233337

RESUMO

Microsporum gypseum causes dermatomycoses in giant pandas (Ailuropoda melanoleuca). This study aimed to investigate the immune response of M. gypseum following deep infection. The degree of damage to the heart, liver, spleen, lungs, and kidneys was evaluated using tissue fungal load, organ index, and histopathological methods. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) detected the mRNA expression of receptors and cytokines in the lung, and immunofluorescence staining and flow cytometry, were used to assess immune cells in the lung. The results indicated that conidia mainly colonized the lungs and caused serious injury with M. gypseum infection. Furthermore, dectin-1, TLR-2, and TLR-4 played a role in recognizing M. gypseum cells. Numerous inflammatory cells, mainly macrophages, dendritic cells, polymorphonuclear neutrophils, and inflammatory cytokines (TGF-ß, TNF-α, IL-1ß, IL-6, IL-10, IL-12, and IL-23), were activated in the early stages of infection. With the high expression of IL-22, IL-17A, and IL-17F, the Th17 pathway exerted an adaptive immune response to M. gypseum infection. These results can potentially aid in the diagnosis and treatment of diseases caused by M. gypseum in giant pandas.


Assuntos
Imunidade Adaptativa , Interleucina-17 , Microsporum , Células Th17 , Ursidae , Animais , Arthrodermataceae , Citocinas/genética , Inflamação , Interleucina-10 , Interleucina-12 , Interleucina-23 , Interleucina-6 , RNA Mensageiro/genética , Células Th17/imunologia , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Ursidae/genética , Ursidae/imunologia
2.
BMC Microbiol ; 19(1): 113, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138125

RESUMO

BACKGROUND: Trichosporon is the dominant genus of epidermal fungi in giant pandas (Ailuropoda melanoleuca) and causes local and deep infections. To provide the information needed for the diagnosis and treatment of trichosporosis in giant pandas, the sequence of ITS, D1/D2, and IGS1 loci in 29 isolates of Trichosporon spp. which were isolated from the body surface of giant pandas were combination to investigate interspecies identification and genotype. Morphological development was examined via slide culture. Additionally, mice were infected by skin inunction, intraperitoneal injection, and subcutaneous injection for evaluation of pathogenicity. RESULTS: The twenty-nine isolates of Trichosporon spp. were identified as 11 species, and Trichosporon jirovecii and T. asteroides were the commonest species. Four strains of T. laibachii and one strain of T. moniliiforme were found to be of novel genotypes, and T. jirovecii was identified to be genotype 1. T. asteroides had the same genotype which involved in disseminated trichosporosis. The morphological development processes of the Trichosporon spp. were clearly different, especially in the processes of single-spore development. Pathogenicity studies showed that 7 species damaged the liver and skin in mice, and their pathogenicity was stronger than other 4 species. T. asteroides had the strongest pathogenicity and might provoke invasive infection. The pathological characteristics of liver and skin infections caused by different Trichosporon spp. were similar. CONCLUSIONS: Multiple species of Trichosporon were identified on the skin surface of giant panda, which varied in morphological development and pathogenicity. Combination of ITS, D1/D2, and IGS1 loci analysis, and morphological development process can effectively identify the genotype of Trichosporon spp.


Assuntos
DNA Fúngico/genética , Trichosporon/classificação , Trichosporon/patogenicidade , Tricosporonose/microbiologia , Ursidae/microbiologia , Animais , Feminino , Técnicas de Genotipagem , Fígado/microbiologia , Masculino , Camundongos , Filogenia , Pele/microbiologia , Especificidade da Espécie , Trichosporon/genética , Trichosporon/isolamento & purificação
3.
Front Microbiol ; 13: 1075041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817108

RESUMO

Introduction: Intestinal microbiota composition plays a crucial role in modulating the health of the host. This evaluation indicator is very sensitive and profoundly impacts the protection of endangered species. Currently, information on the gut microbiota of wild birds remains scarce. Therefore, this study aimed to describe the gut microbial community structure and potentially, the pathogen composition of wild Arborophila rufipectus. Methods: To guarantee comprehensive data analysis, we collected fecal samples from wild A. rufipectus and Lophura nycthemera in their habitats for two quarters. The 16S rRNA gene was then sequenced using high-throughput sequencing technology to examine the intestinal core microbiota, microbial diversity, and potential pathogens with the aim of determining if the composition of the intestinal microflora varies seasonally. Results and Discussion: The gut microbiota of A. rufipectus and L. nycthemera primarily comprised four phyla: Proteobacteria (45.98%), Firmicutes (35.65%), Bacteroidetes (11.77%), and Actinobacteria (3.48%), which accounted for 96.88% of the total microbial composition in all samples. At the genus level, core microorganisms were found, including Shigella (10.38%), Clostridium (6.16%), Pseudomonas (3.03%), and Rickettsiella (1.99%). In these genera, certain microbial species have been shown to be pathogenic. This study provides important indicators for analyzing the health status of A. rufipectus and formulating protective measures.

4.
Front Vet Sci ; 8: 708077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805328

RESUMO

Dermatomycosis is the second major cause of morbidity in giant pandas (Ailuropoda melanoleuca), and seriously endangers its health. Previous observations indicated that the occurrence of dermatomycosis in the giant panda varies in different seasons. The skin microbiota is a complex ecosystem, but knowledge on the community structure and the pathogenic potentials of fungi on the skin of the giant panda remains limited. In this study, samples from the giant panda skin in different seasons were collected, and the mycobiota were profiled by 18S rRNA gene sequencing. In total, 375 genera in 38 phyla were detected, with Ascomycota, Basidiomycota, Streptophyta, and Chlorophyta as the predominant phyla and Trichosporon, Guehomyces, Davidiella, Chlorella, Asterotremella, and Klebsormidium as the predominant genera. The skin mycobiota of the giant panda changed in the seasons, and the diversity and abundance of the skin fungi were significantly higher in spring, autumn, and summer than in the winter. Several dermatomycosis-associated fungi were detected as opportunists in the skin mycobiota of healthy giant pandas. Clinical dermatomycosis in the giant panda is observed more in summer and autumn. In this study, the results indicated that the high diversity and abundance of the skin fungi may have enhanced the occurrence of dermatomycosis in autumn and summer, and that dermatomycosis-associated fungi are the normal components of the skin mycobiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA