Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4005, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414790

RESUMO

TET2/3 play a well-known role in epigenetic regulation and mouse development. However, their function in cellular differentiation and tissue homeostasis remains poorly understood. Here we show that ablation of TET2/3 in intestinal epithelial cells results in a murine phenotype characterized by a severe homeostasis imbalance in the small intestine. Tet2/3-deleted mice show a pronounced loss of mature Paneth cells as well as fewer Tuft and more Enteroendocrine cells. Further results show major changes in DNA methylation at putative enhancers, which are associated with cell fate-determining transcription factors and functional effector genes. Notably, pharmacological inhibition of DNA methylation partially rescues the methylation and cellular defects. TET2/3 loss also alters the microbiome, predisposing the intestine to inflammation under homeostatic conditions and acute inflammation-induced death. Together, our results uncover previously unrecognized critical roles for DNA demethylation, possibly occurring subsequently to chromatin opening during intestinal development, culminating in the establishment of normal intestinal crypts.


Assuntos
Dioxigenases , Epigênese Genética , Animais , Camundongos , Diferenciação Celular/genética , Dioxigenases/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Inflamação/metabolismo , Intestino Delgado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA