Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(12): e23269, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37889852

RESUMO

Viruses deploy multiple strategies to suppress the host innate immune response to facilitate viral replication and pathogenesis. Typical G3BP1+ stress granules (SGs) are usually formed in host cells after virus infection to restrain viral translation and to stimulate innate immunity. Thus, viruses have evolved various mechanisms to inhibit SGs or to repurpose SG components such as G3BP1. Previous studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inhibited host immunity during the early stage of COVID-19. However, the precise mechanism is not yet well understood. Here we showed that the SARS-CoV-2 nucleocapsid (SARS2-N) protein suppressed the double-stranded RNA (dsRNA)-induced innate immune response, concomitant with inhibition of SGs and the induction of atypical SARS2-N+ /G3BP1+ foci (N+ foci). The SARS2-N protein-induced formation of N+ foci was dependent on the ability of its ITFG motif to hijack G3BP1, which contributed to suppress the innate immune response. Importantly, SARS2-N protein facilitated viral replication by inducing the formation of N+ foci. Viral mutations within SARS2-N protein that impair the formation of N+ foci are associated with the inability of the SARS2-N protein to suppress the immune response. Taken together, our study has revealed a novel mechanism by which SARS-CoV-2 suppresses the innate immune response via induction of atypical N+ foci. We think that this is a critical strategy for viral pathogenesis and has potential therapeutic implications.


Assuntos
COVID-19 , DNA Helicases , Humanos , SARS-CoV-2/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Grânulos de Estresse , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Imunidade Inata , Replicação Viral , Proteínas do Nucleocapsídeo/metabolismo
2.
Mol Cell Biochem ; 479(4): 761-777, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37178376

RESUMO

Saliva has emerged as a promising noninvasive biofluid for the diagnosis of oral and systemic diseases, including viral infections. During the coronavirus disease 2019 (COVID-19) pandemic, a growing number of studies focused on saliva-based detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Taking advantage of the WoS core collection (WoSCC) and CiteSpace, we retrieved 1021 articles related to saliva-based detection of SARS-CoV-2 and conducted a comprehensive bibliometric analysis. We analyzed countries, institutions, authors, cited authors, and cited journals to summarize their contribution and influence and analyzed keywords to explore research hotspots and trends. From 2020 to 2021, research focused on viral transmission via saliva and verification of saliva as a reliable specimen, whereas from 2021 to the present, the focus of research has switched to saliva-based biosensors for SARS-CoV-2 detection. By far, saliva has been verified as a reliable specimen for SARS-CoV-2 detection, although a standardized procedure for saliva sampling and processing is needed. Studies on saliva-based detection of SARS-CoV-2 will promote the development of saliva-based diagnostics and biosensors for viral detection. Collectively, our findings could provide valuable information to help scientists perceive the basic knowledge landscapes on saliva-based detection of SARS-CoV-2, the past and current research hotspots, and future opportunities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Saliva , Teste para COVID-19 , Bibliometria
3.
Langmuir ; 37(12): 3612-3619, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33730504

RESUMO

Kanamycin (Kana) is widely used as a veterinary medicine and its abuse causes a serious threat to human health, raising the urgent demand for detection of residual Kana in animal-derived food with high specificity and sensitivity. Here, we developed a photoelectrochemical (PEC) biosensor for rapid quantification of Kana, with lead sulfide quantum dots/titanium dioxide nanoparticles (PbS QDs/TiO2 NPs) as a photosensitive composite, a Kana-specific DNA aptamer as a functional sensor, and ruthenium(III) hexaammine (Ru(NH3)63+) as a signal booster. To prepare the PEC aptasensor, TiO2 NPs, PbS QDs, and polyethyleneimine (PEI) were respectively used to modify the indium tin oxide electrode, and then the amine-terminated aptamer probe was connected to the PEI via glutaraldehyde. Finally, Ru(NH3)63+ was attached on the surface of the aptamer to increase the photocurrent intensity. When Kana binds competitively with Ru(NH3)63+ to the aptamer immobilized on the surface of the aptasensor, Ru(NH3)63+ will be released from the aptamer, resulting in a decrease of the photocurrent signal. This PEC aptasensor exhibits a good linear relationship between the photocurrent shift and the logarithm of Kana concentration within the range of 1.0-300.0 nmol L-1, and the detection limit is 0.161 nmol L-1. Importantly, the PEC aptasensor presented good detection selectivity owing to specific interaction with Kana and was successfully implemented to quantify Kana in honey and milk, suggesting that the PEC aptasensor has the potential of rapid detection of residual Kana in animal-derived foods.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Pontos Quânticos , Animais , Técnicas Eletroquímicas , Humanos , Canamicina , Limite de Detecção , Titânio
4.
Nanoscale ; 14(5): 1971-1977, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060991

RESUMO

The formation of high-nuclear silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we report an unprecedented gigantic Ag148 ([Ag148S26Cl30(CCBut)60](SbF6)6) cluster co-templated by Cl- and S2-, which was well-defined by single-crystal X-ray diffraction and high-resolution mass spectrometry. The cluster exhibits a hierarchical structure consisting of fused Ag24X16 kernel, Ag60X20 shell and "cluster of clusters assembling" of four pentagonal concave polyhedral {Ag16X5} units. Furthermore, the silver cluster emits red light at room temperature with a prominent 39.6% QY. The cellular uptake and cytotoxicity indicate that Ag148 induces apoptosis of cancer cells in a dose-dependent manner.


Assuntos
Luminescência , Neoplasias , Cloretos , Cristalografia por Raios X , Neoplasias/tratamento farmacológico , Prata , Sulfetos
5.
Sci Bull (Beijing) ; 66(12): 1194-1204, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33495715

RESUMO

A key to tackling the coronavirus disease 2019 (COVID-19) pandemic is to understand how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manages to outsmart host antiviral defense mechanisms. Stress granules (SGs), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. Here, we show that the SARS-CoV-2 nucleocapsid (N) protein, an RNA binding protein essential for viral production, interacted with Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) and disrupted SG assembly, both of which require intrinsically disordered region1 (IDR1) in N protein. The N protein partitioned into SGs through liquid-liquid phase separation with G3BP, and blocked the interaction of G3BP1 with other SG-related proteins. Moreover, the N protein domains important for phase separation with G3BP and SG disassembly were required for SARS-CoV-2 viral production. We propose that N protein-mediated SG disassembly is crucial for SARS-CoV-2 production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA