Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 606(7913): 382-388, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614220

RESUMO

Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular , Metabolismo Energético , Humanos , Espectrometria de Massas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição , Proteínas rab5 de Ligação ao GTP
2.
Mol Cell ; 73(4): 763-774.e10, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661980

RESUMO

The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis.


Assuntos
Lipídeos de Membrana/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Sítios de Ligação , Cardiolipinas/metabolismo , Cristalografia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Triptofano , Ubiquinona/química , Ubiquinona/genética
3.
Mol Cell ; 68(5): 970-977.e11, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220658

RESUMO

Mitoproteases are becoming recognized as key regulators of diverse mitochondrial functions, although their direct substrates are often difficult to discern. Through multi-omic profiling of diverse Saccharomyces cerevisiae mitoprotease deletion strains, we predicted numerous associations between mitoproteases and distinct mitochondrial processes. These include a strong association between the mitochondrial matrix octapeptidase Oct1p and coenzyme Q (CoQ) biosynthesis-a pathway essential for mitochondrial respiration. Through Edman sequencing and in vitro and in vivo biochemistry, we demonstrated that Oct1p directly processes the N terminus of the CoQ-related methyltransferase, Coq5p, which markedly improves its stability. A single mutation to the Oct1p recognition motif in Coq5p disrupted its processing in vivo, leading to CoQ deficiency and respiratory incompetence. This work defines the Oct1p processing of Coq5p as an essential post-translational event for proper CoQ production. Additionally, our data visualization tool enables efficient exploration of mitoprotease profiles that can serve as the basis for future mechanistic investigations.


Assuntos
Aminopeptidases/metabolismo , Metabolismo Energético , Metabolômica/métodos , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Aminopeptidases/genética , Estabilidade Enzimática , Genótipo , Metiltransferases/genética , Mutação , Fenótipo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Ubiquinona/genética
4.
Mol Cell ; 63(4): 621-632, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499296

RESUMO

Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Bases de Dados de Proteínas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas Mitocondriais/genética , Interferência de RNA , Transdução de Sinais , Transfecção , Ubiquinona/metabolismo
5.
Mol Cell ; 63(4): 608-620, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499294

RESUMO

The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease.


Assuntos
Comportamento Animal , Ataxia Cerebelar/enzimologia , Cerebelo/enzimologia , Proteínas Mitocondriais/deficiência , Músculo Esquelético/enzimologia , Ubiquinona/deficiência , Animais , Células COS , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/psicologia , Cerebelo/fisiopatologia , Cerebelo/ultraestrutura , Chlorocebus aethiops , Modelos Animais de Doenças , Tolerância ao Exercício , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Atividade Motora , Força Muscular , Músculo Esquelético/fisiopatologia , Fenótipo , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Reconhecimento Psicológico , Teste de Desempenho do Rota-Rod , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Convulsões/enzimologia , Convulsões/genética , Convulsões/fisiopatologia , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Ubiquinona/química , Ubiquinona/genética
6.
Mol Cell ; 57(1): 83-94, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25498144

RESUMO

The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways.


Assuntos
Mitocôndrias/química , Proteínas Mitocondriais/química , Ubiquinona/química , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Ubiquinona/biossíntese
7.
J Biol Chem ; 296: 100643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33862086

RESUMO

Coenzyme Q (CoQ), a redox-active lipid essential for oxidative phosphorylation, is synthesized by virtually all cells, but how eukaryotes make the universal CoQ head group precursor 4-hydroxybenzoate (4-HB) from tyrosine is unknown. The first and last steps of this pathway have been defined in Saccharomyces cerevisiae, but the intermediates and enzymes involved in converting 4-hydroxyphenylpyruvate (4-HPP) to 4-hydroxybenzaldehyde (4-HBz) have not been described. Here, we interrogate this pathway with genetic screens, targeted LC-MS, and chemical genetics. We identify three redundant aminotransferases (Bna3, Bat2, and Aat2) that support CoQ biosynthesis in the absence of the established pathway tyrosine aminotransferases, Aro8 and Aro9. We use isotope labeling to identify bona fide tyrosine catabolites, including 4-hydroxyphenylacetate (4-HPA) and 4-hydroxyphenyllactate (4-HPL). Additionally, we find multiple compounds that rescue this pathway when exogenously supplemented, most notably 4-hydroxyphenylacetaldehyde (4-HPAA) and 4-hydroxymandelate (4-HMA). Finally, we show that the Ehrlich pathway decarboxylase Aro10 is dispensable for 4-HB production. These results define new features of 4-HB synthesis in yeast, demonstrate the redundant nature of this pathway, and provide a foundation for further study.


Assuntos
Parabenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Tirosina/metabolismo , Ubiquinona/análogos & derivados , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transaminases/genética , Ubiquinona/metabolismo
8.
Anal Chem ; 93(9): 4217-4222, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33617230

RESUMO

Mass spectrometry (MS) serves as the centerpiece technology for proteome, lipidome, and metabolome analysis. To gain a better understanding of the multifaceted networks of myriad regulatory layers in complex organisms, integration of different multiomic layers is increasingly performed, including joint extraction methods of diverse biomolecular classes and comprehensive data analyses of different omics. Despite the versatility of MS systems, fractured methodology drives nearly all MS laboratories to specialize in analysis of a single ome at the exclusion of the others. Although liquid chromatography-mass spectrometry (LC-MS) analysis is similar for different biomolecular classes, the integration on the instrument level is lagging behind. The recent advancements in high flow proteomics enable us to take a first step towards integration of protein and lipid analysis. Here, we describe a technology to achieve broad and deep coverage of multiple molecular classes simultaneously through multi-omic single-shot technology (MOST), requiring only one column, one LC-MS instrument, and a simplified workflow. MOST achieved great robustness and reproducibility. Its application to a Saccharomyces cerevisiae study consisting of 20 conditions revealed 2842 protein groups and 325 lipids and potential molecular relationships.


Assuntos
Lipidômica , Proteoma , Cromatografia Líquida , Reprodutibilidade dos Testes , Tecnologia
9.
J Proteome Res ; 17(10): 3526-3536, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30180576

RESUMO

The development of effective strategies for the comprehensive identification and quantification of proteoforms in complex systems is a critical challenge in proteomics. Proteoforms, the specific molecular forms in which proteins are present in biological systems, are the key effectors of biological function. Thus, knowledge of proteoform identities and abundances is essential to unraveling the mechanisms that underlie protein function. We recently reported a strategy that integrates conventional top-down mass spectrometry with intact-mass determinations for enhanced proteoform identifications and the elucidation of proteoform families and applied it to the analysis of yeast cell lysate. In the present work, we extend this strategy to enable quantification of proteoforms, and we examine changes in the abundance of murine mitochondrial proteoforms upon differentiation of mouse myoblasts to myotubes. The integrated top-down and intact-mass strategy provided an increase of ∼37% in the number of identified proteoforms compared to top-down alone, which is in agreement with our previous work in yeast; 1779 unique proteoforms were identified using the integrated strategy compared to 1301 using top-down analysis alone. Quantitative comparison of proteoform differences between the myoblast and myotube cell types showed 129 observed proteoforms exhibiting statistically significant abundance changes (fold change >2 and false discovery rate <5%).


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Diferenciação Celular , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(44): E4697-705, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339443

RESUMO

Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquinona/biossíntese , Animais , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Oxigenases de Função Mista , Estrutura Terciária de Proteína , Ubiquinona/genética
11.
Liver Int ; 32(4): 582-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22221894

RESUMO

BACKGROUND: Mouse hepatocarcinogenesis is associated with mutations in Hras, but infrequently in Kras. The effect on carcinogenesis of developmental age at the time of ras mutation remains unknown. AIM: We sought to compare quantitatively the effects of expressing mutant H- or Kras genes in fetal vs. adult mouse liver. METHODS: We established an inducible system of gene expression in mouse liver to define disease pathogenesis associated with activation of oncogene expression. RESULTS: Diffuse expression of either oncogene in fetal or adult hepatocytes caused hepatomegaly. For mutant Hras(G12V), this phenotype was almost fully reversible and accompanied by apoptosis, indicating that maintenance of hepatomegaly requires continuous Hras(G12V) expression. We also examined the effect of ras expression on growth of transplanted hepatocytes in an in vivo system that allows us to quantify hepatocyte growth effects in both permissive and restrictive hepatic growth environments. Mutant Kras(G12D) had no effect on hepatocyte growth in this system. In contrast, Hras(G12V) induced increased hepatocyte focus growth in quiescent liver, the hallmark of a cell autonomous growth stimulus. Hras(G12V) also increased the fraction of donor hepatocyte foci that displayed extreme growth, a characteristic of preneoplastic lesions. CONCLUSIONS: The primary effect of diffuse, whole-liver expression of either mutant ras gene in fetal or adult mouse liver is diffuse and progressive hepatic growth. Hras(G12V) mutation influences hepatocarcinogenesis by conferring cell autonomous growth potential upon foci of expressing cells and by increasing the risk of neoplastic progression. Kras(G12D) does not share these latter carcinogenic effects in mouse liver.


Assuntos
Feto/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores Etários , Animais , Proliferação de Células , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genética
12.
Liver Int ; 31(3): 303-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21281430

RESUMO

BACKGROUND: Mutations in the Wnt signalling pathway molecule ß-catenin are associated with liver cancer. AIMS: Our aim was to confirm the effects of stabilized ß-catenin on liver growth, identify whether those effects were reversible and cell autonomous or non-cell autonomous and to model ß-catenin-induced liver cancer in mice. METHODS: Using a liver-specific inducible promoter, we generated transgenic mice in which the expression of mutant ß-catenin can be induced or repressed within hepatocytes in mice of different ages. RESULTS: Similar to other models, the hepatic expression of mutant ß-catenin in our model beginning in utero or induced in quiescent adult liver resulted in a two-fold liver enlargement and development of disease with a latency of 1-5 months, and mice displayed elevated blood ammonia and altered hepatic gene expression. Our model additionally allowed us to discover that molecular and phenotypic abnormalities were reversible following the inhibition of transgene expression. Hepatocyte transplant studies indicated that mutant ß-catenin could not increase the growth of transgene-expressing foci in either growth-permissive or -restrictive hepatic environments, but still directly altered hepatocyte gene expression. Mice with continuous but focal transgene expression developed hepatic neoplasms after the age of 1 year. CONCLUSIONS: Our findings indicate that hepatocyte gene expression is directly affected by mutant ß-catenin in a cell autonomous manner. However, hepatomegaly associated with diffuse hepatocyte-specific expression of mutant ß-catenin is secondary to liver functional alteration or non-cell autonomous. Both phenotypes are reversible. Nevertheless, some foci of transgene-expressing cells progressed to carcinoma, confirming the association of mutant ß-catenin with liver cancer.


Assuntos
Neoplasias Hepáticas Experimentais/genética , Fígado/crescimento & desenvolvimento , Proteínas Mutantes/genética , beta Catenina/genética , Animais , Transplante de Células , Doxiciclina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/transplante , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Homeostase , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Tamanho do Órgão/genética , beta Catenina/metabolismo
13.
Elife ; 102021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338637

RESUMO

Copy number variation through gene or chromosome amplification provides a route for rapid phenotypic variation and supports the long-term evolution of gene functions. Although the evolutionary importance of copy-number variation is known, little is understood about how genetic background influences its tolerance. Here, we measured fitness costs of over 4000 overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.


Assuntos
Variações do Número de Cópias de DNA , Evolução Molecular , Expressão Gênica , Aptidão Genética , Variação Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Patrimônio Genético , Genoma Fúngico , Genômica , Fenótipo
14.
Nat Commun ; 12(1): 4769, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362905

RESUMO

Beyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized from its site of synthesis on the inner mitochondrial membrane to other sites of action remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exogenous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The activities of both proteins rely on their atypical kinase/ATPase domains, which they share with Coq8-an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal protein machinery central to CoQ trafficking in yeast and lend insights into the broader interplay between mitochondria and the rest of the cell.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Antioxidantes/metabolismo , Lipídeos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Fosfotransferases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Cell Biol ; 218(4): 1353-1369, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674579

RESUMO

Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.


Assuntos
Retículo Endoplasmático/enzimologia , Enzimas/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Enzimas/genética , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Complexos Multienzimáticos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquinona/genética , Ubiquinona/metabolismo
16.
Cell Syst ; 6(1): 125-135.e6, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29248374

RESUMO

Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias/enzimologia , Biogênese de Organelas , Fosforilação Oxidativa , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Ubiquinona/biossíntese
17.
Cell Syst ; 6(6): 709-721.e6, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29909275

RESUMO

The genetic regulation and physiological impact of most lipid species are unexplored. Here, we profiled 129 plasma lipid species across 49 strains of the BXD mouse genetic reference population fed either chow or a high-fat diet. By integrating these data with genomics and phenomics datasets, we elucidated genes by environment (diet) interactions that regulate systemic metabolism. We found quantitative trait loci (QTLs) for ∼94% of the lipids measured. Several QTLs harbored genes associated with blood lipid levels and abnormal lipid metabolism in human genome-wide association studies. Lipid species from different classes provided signatures of metabolic health, including seven plasma triglyceride species that associated with either healthy or fatty liver. This observation was further validated in an independent mouse model of non-alcoholic fatty liver disease (NAFLD) and in plasma from NAFLD patients. This work provides a resource to identify plausible genes regulating the measured lipid species and their association with metabolic traits.


Assuntos
Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Adulto , Animais , Estudos de Coortes , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Lipídeos/sangue , Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Estudos Prospectivos , Locos de Características Quantitativas , Triglicerídeos/metabolismo
18.
Cell Syst ; 6(6): 722-733.e6, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29909277

RESUMO

The genetics of individual lipid species and their relevance in disease is largely unresolved. We profiled a subset of storage, signaling, membrane, and mitochondrial liver lipids across 385 mice from 47 strains of the BXD mouse population fed chow or high-fat diet and integrated these data with complementary multi-omics datasets. We identified several lipid species and lipid clusters with specific phenotypic and molecular signatures and, in particular, cardiolipin species with signatures of healthy and fatty liver. Genetic analyses revealed quantitative trait loci for 68% of the lipids (lQTL). By multi-layered omics analyses, we show the reliability of lQTLs to uncover candidate genes that can regulate the levels of lipid species. Additionally, we identified lQTLs that mapped to genes associated with abnormal lipid metabolism in human GWASs. This work provides a foundation and resource for understanding the genetic regulation and physiological significance of lipid species.


Assuntos
Lipídeos/genética , Fígado/química , Fígado/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/classificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Hepatopatia Gordurosa não Alcoólica/genética , Fenótipo , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Análise de Sistemas
19.
Cell Chem Biol ; 25(2): 154-165.e11, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29198567

RESUMO

Human COQ8A (ADCK3) and Saccharomyces cerevisiae Coq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activity in vivo. Here, we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small-molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis.


Assuntos
Lipídeos/química , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Adenosina Trifosfatases/metabolismo , Humanos , Proteínas Mitocondriais/química , Modelos Moleculares , Estrutura Molecular , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/química
20.
Cell Rep ; 18(2): 307-313, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076776

RESUMO

Proper maintenance of mitochondrial activity is essential for metabolic homeostasis. Widespread phosphorylation of mitochondrial proteins may be an important element of this process; yet, little is known about which enzymes control mitochondrial phosphorylation or which phosphosites have functional impact. We investigate these issues by disrupting Ptc7p, a conserved but largely uncharacterized mitochondrial matrix PP2C-type phosphatase. Loss of Ptc7p causes respiratory growth defects concomitant with elevated phosphorylation of select matrix proteins. Among these, Δptc7 yeast exhibit an increase in phosphorylation of Cit1p, the canonical citrate synthase of the tricarboxylic acid (TCA) cycle, that diminishes its activity. We find that phosphorylation of S462 can eliminate Cit1p enzymatic activity likely by disrupting its proper dimerization, and that Ptc7p-driven dephosphorylation rescues Cit1p activity. Collectively, our work connects Ptc7p to an essential TCA cycle function and to additional phosphorylation events that may affect mitochondrial activity inadvertently or in a regulatory manner.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Multimerização Proteica , Proteômica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA