Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proteins ; 92(7): 808-818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38333996

RESUMO

Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic "isoprenol pathways," which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non-natural alkyl-monophosphates (alkyl-Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non-natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non-natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non-natural alkyl-P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl-P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non-natural substrates.


Assuntos
Trifosfato de Adenosina , Domínio Catalítico , Thermococcus , Especificidade por Substrato , Thermococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Cinética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Hemiterpenos/metabolismo , Hemiterpenos/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Conformação Proteica em alfa-Hélice , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Clonagem Molecular , Expressão Gênica , Conformação Proteica em Folha beta , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Quinases
2.
Am J Physiol Renal Physiol ; 321(2): F236-F244, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251273

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-UMOD. In the CRISPR/Cas9-generated murine model and patients with ADTKD-UMOD, we found that immunoglobulin heavy chain-binding protein (BiP), an endoplasmic reticulum chaperone, was exclusively upregulated by mutant UMOD in the thick ascending limb and easily detected by Western blot analysis in the urine at an early stage of disease. However, even the most sensitive ELISA failed to detect urinary BiP in affected individuals. We therefore developed an ultrasensitive, plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA) to quantify urinary BiP concentration by harnessing the newly invented ultrabright fluorescent nanoconstruct, termed "plasmonic Fluor." p-FLISA demonstrated that urinary BiP excretion was significantly elevated in patients with ADTKD-UMOD compared with unaffected controls, which may have potential utility in risk stratification, disease activity monitoring, disease progression prediction, and guidance of endoplasmic reticulum-targeted therapies in ADTKD.NEW & NOTEWORTHY Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is an underdiagnosed cause of chronic kidney disease (CKD). Lack of ultrasensitive bioanalytical tools has hindered the discovery of low abundant urinary biomarkers in ADTKD. Here, we developed an ultrasensitive plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA). p-FLISA demonstrated that secreted immunoglobulin heavy chain-binding protein is an early urinary endoplasmic reticulum stress biomarker in ADTKD-UMOD, which will be valuable in monitoring disease progression and the treatment response in ADTKD.


Assuntos
Biomarcadores/urina , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico/urina , Técnicas de Imunoadsorção , Nefrite Intersticial/urina , Animais , Chaperona BiP do Retículo Endoplasmático , Humanos , Camundongos , Nefrite Intersticial/genética , Uromodulina/genética
3.
J Card Fail ; 26(10): 870-875, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32681883

RESUMO

BACKGROUND: Impella (Abiomed Inc, Danvers, MA) is a temporary mechanical support device positioned across the aortic valve, and can be used to support patient before LVAD implantation. There are no data on the incidence of aortic insufficiency (AI) in patients supported with Impella as a bridge to durable LVAD implantation. We sought to assess the incidence of AI in patients with Impella support as a bridge to durable left ventricular assist device (LVAD) implantation. METHODS: We reviewed all patients undergoing primary LVAD implantation at the University of Pennsylvania from January 2015 onward, comparing those supported with Impella as temporary mechanical support with those supported by either venoarterial extracorporeal life support or an intra-aortic balloon pump. We reviewed transthoracic echocardiography preoperatively, as well as at 1 week, 1, 3, 6, 9, and 12 months after LVAD implantation. RESULTS: A total of 215 echocardiograms were analyzed in 41 patients. Eleven patients were supported with Impella before LVAD implant-6 patients with Impella alone (5 with Impella CP, 1 with Impella 5.0) and 5 with Impella in conjunction with venoarterial extracorporeal life support (2 with Impella 2.5, 2 with Impella CP, and 1 with Impella 5.0). After LVAD implant, mild or moderate AI developed in 82% of patients supported with Impella (9 of 11) compared with 43% of those without Impella (13 of 30) (P = .038). CONCLUSIONS: Patients supported by Impella as a bridge to durable LVAD have a higher risk of developing AI. Further studies are needed to assess this risk as the use of the Impella increases.


Assuntos
Insuficiência da Valva Aórtica , Insuficiência Cardíaca , Coração Auxiliar , Valva Aórtica , Insuficiência da Valva Aórtica/epidemiologia , Insuficiência da Valva Aórtica/etiologia , Insuficiência da Valva Aórtica/cirurgia , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Coração Auxiliar/efeitos adversos , Humanos , Estudos Retrospectivos , Resultado do Tratamento
4.
Appl Microbiol Biotechnol ; 104(18): 7853-7865, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32725322

RESUMO

Daptomycin is a last resort antibiotic for the treatment of infections caused by many Gram-positive bacterial strains, including vancomycin-resistant Enterococcus (VRE) and methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). However, the emergence of daptomycin-resistant strains of S. aureus and Enterococcus in recent years has renewed interest in synthesizing daptomycin analogs to overcome resistance mechanisms. Within this context, three aromatic prenyltransferases have been shown to accept daptomycin as a substrate, and the resulting prenylated analog was shown to be more potent against Gram-positive strains than the parent compound. Consequently, utilizing prenyltransferases to derivatize daptomycin offered an attractive alternative to traditional synthetic approaches, especially given the molecule's structural complexity. Herein, we report exploiting the ability of prenyltransferase CdpNPT to synthesize alkyl-diversified daptomycin analogs in combination with a library of synthetic non-native alkyl-pyrophosphates. The results revealed that CdpNPT can transfer a variety of alkyl groups onto daptomycin's tryptophan residue using the corresponding alkyl-pyrophosphates, while subsequent scaled-up reactions suggested that the enzyme can alkylate the N1, C2, C5, and C6 positions of the indole ring. In vitro antibacterial activity assays using 16 daptomycin analogs revealed that some of the analogs displayed 2-80-fold improvements in potency against MRSA, VRE, and daptomycin-resistant strains of S. aureus and Enterococcus faecalis. Thus, along with the new potent analogs, these findings have established that the regio-chemistry of alkyl substitution on the tryptophan residue can modulate daptomycin's potency. With additional protein engineering to improve the regio-selectivity, the described method has the potential to become a powerful tool for diversifying complex indole-containing molecules. KEY POINTS: • CdpNPT displays impressive donor promiscuity with daptomycin as the acceptor. • CdpNPT catalyzes N1-, C2-, C5-, and C6-alkylation on daptomycin's tryptophan residue. • Differential alkylation of daptomycin's tryptophan residue modulates its activity.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Daptomicina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Vancomicina
5.
Appl Microbiol Biotechnol ; 104(10): 4383-4395, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32189045

RESUMO

Aromatic prenyltransferases are known for their extensive promiscuity toward aromatic acceptor substrates and their ability to form various carbon-carbon and carbon-heteroatom bonds. Of particular interest among the prenyltransferases is NphB, whose ability to geranylate cannabinoid precursors has been utilized in several in vivo and in vitro systems. It has therefore been established that prenyltransferases can be utilized as biocatalysts for the generation of useful compounds. However, recent observations of non-native alkyl-donor promiscuity among prenyltransferases indicate the role of NphB in biocatalysis could be expanded beyond geranylation reactions. Therefore, the goal of this study was to elucidate the donor promiscuity of NphB using different acceptor substrates. Herein, we report distinct donor profiles between NphB-catalyzed reactions involving the known substrate 1,6-dihydroxynaphthalene and an FDA-approved drug molecule sulfabenzamide. Furthermore, we report the first instance of regiospecific, NphB-catalyzed N-alkylation of sulfabenzamide using a library of non-native alkyl-donors, indicating the biocatalytic potential of NphB as a late-stage diversification tool. KEY POINTS: • NphB can utilize the antibacterial drug sulfabenzamide as an acceptor. • The donor profile of NphB changes dramatically with the choice of acceptor. • NphB performs a previously unknown regiospecific N-alkylation on sulfabenzamide. • Prenyltransferases like NphB can be utilized as drug-alkylating biocatalysts.


Assuntos
Dimetilaliltranstransferase/metabolismo , Streptomyces/enzimologia , Alquilação , Biocatálise , Dimetilaliltranstransferase/química , Cinética , Espectroscopia de Ressonância Magnética , Naftóis/metabolismo , Prenilação , Sensibilidade e Especificidade , Streptomyces/genética , Especificidade por Substrato , Sulfonamidas/metabolismo
6.
Circ Res ; 121(4): 411-423, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28642329

RESUMO

RATIONALE: Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE: The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS: Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS: Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.


Assuntos
Simulação por Computador , Acoplamento Excitação-Contração/fisiologia , Células-Tronco Mesenquimais/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Comunicação Parácrina/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Ratos
7.
J Am Soc Nephrol ; 29(6): 1690-1705, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29739813

RESUMO

Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined.Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo, in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids.Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro, stimulation of purified human kidney SCs and human kidney organoids with IL-1ß recapitulated the molecular events observed in vivo, inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1ß stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury.Conclusions Our findings define a connection between IL-1ß and metabolic switch in fibrosis initiation and progression and highlight IL-1ß and MYC as potential therapeutic targets in tubulointerstitial diseases.


Assuntos
Injúria Renal Aguda/patologia , Interleucina-1beta/farmacologia , Rim/citologia , Rim/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/metabolismo , Animais , Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Matriz Extracelular/metabolismo , Fibrose , Glicólise/efeitos dos fármacos , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Organoides , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Hormônios Tireóideos/metabolismo , Triazóis/farmacologia , Proteínas de Ligação a Hormônio da Tireoide
8.
J Am Soc Nephrol ; 28(6): 1769-1782, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28130402

RESUMO

Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ß-catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Nefropatias/etiologia , Rim/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Animais , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fibroblastos , Fibrose/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pericitos
9.
Drug Metab Dispos ; 45(9): 1000-1007, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646078

RESUMO

Coumadin (rac-warfarin) is the most commonly used anticoagulant in the world; however, its clinical use is often challenging because of its narrow therapeutic range and interindividual variations in response. A critical contributor to the uncertainty is variability in warfarin metabolism, which includes mostly oxidative but also reductive pathways. Reduction of each warfarin enantiomer yields two warfarin alcohol isomers, and the corresponding four alcohols retain varying levels of anticoagulant activity. Studies on the kinetics of warfarin reduction have often lacked resolution of parent-drug enantiomers and have suffered from coelution of pairs of alcohol metabolites; thus, those studies have not established the importance of individual stereospecific reductive pathways. We report the first steady-state analysis of R- and S-warfarin reduction in vitro by pooled human liver cytosol. As determined by authentic standards, the major metabolites were 9R,11S-warfarin alcohol for R-warfarin and 9S,11S-warfarin alcohol for S-warfarin. R-warfarin (Vmax 150 pmol/mg per minute, Km 0.67 mM) was reduced more efficiently than S-warfarin (Vmax 27 pmol/mg per minute, Km 1.7 mM). Based on inhibitor phenotyping, carbonyl reductase-1 dominated R-and S-warfarin reduction, followed by aldo-keto reductase-1C3 and then other members of that family. Overall, the carbonyl at position 11 undergoes stereospecific reduction by multiple enzymes to form the S alcohol for both drug enantiomers, yet R-warfarin undergoes reduction preferentially. This knowledge will aid in assessing the relative importance of reductive pathways for R- and S-warfarin and factors influencing levels of pharmacologically active parent drugs and metabolites, thus impacting patient dose responses.


Assuntos
Fígado/metabolismo , Oxirredutases/metabolismo , Varfarina/metabolismo , Anticoagulantes/metabolismo , Cromatografia Líquida de Alta Pressão , Citosol/enzimologia , Citosol/metabolismo , Humanos , Cinética , Fígado/enzimologia , Estereoisomerismo , Relação Estrutura-Atividade , Varfarina/química
10.
J Am Soc Nephrol ; 27(12): 3639-3652, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27026366

RESUMO

The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.


Assuntos
Nefropatias/etiologia , Rim/patologia , Miofibroblastos/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais , Fatores de Necrose Tumoral/fisiologia , Animais , Citocina TWEAK , Progressão da Doença , Fibrose/etiologia , Camundongos , Receptor de TWEAK
11.
Transfusion ; 56(8): 1994-2004, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27237451

RESUMO

BACKGROUND: A minimum male hemoglobin (Hb) level of 13.0 g/dL becomes a Food and Drug Administration requirement effective May 2016. In addition, extending whole blood (WB) interdonation intervals (IDIs) beyond 8 weeks has been considered to reduce iron depletion in repeat blood donors. This study estimates the impact these changes might have on blood availability and donor iron status. STUDY DESIGN AND METHODS: Six blood centers participating in Retrovirus Epidemiology Donor Study-II (REDS-II) collected information on all donation visits from 2006 to 2009. Simulations were developed from these data using a multistage approach that first sought to adequately reproduce the patterns of donor return, Hb and ferritin levels, and outcomes of a donor's visit (successful single- or double-red blood cell donation, deferral for low Hb) observed in REDS-II data sets. Modified simulations were used to predict the potential impact on the blood supply and donor iron status under different Hb cutoff and IDI qualification criteria. RESULTS: More than 10% of WB donations might require replacement under many simulated scenarios. Longer IDIs would reduce the proportion of donors with iron depletion, but 80% of these donors may remain iron-depleted if minimal IDIs increased to 12 or 16 weeks. CONCLUSION: Higher Hb cutoffs and longer IDIs are predicted to have a potentially large impact on collections but only a modest impact on donor iron depletion. Efforts to address iron depletion should be targeted to at-risk donors, such as iron supplementation programs for frequent donors, and policy makers should try to avoid broadly restrictive donation requirements that could substantially reduce blood availability.


Assuntos
Doadores de Sangue/estatística & dados numéricos , Hemoglobinas/análise , Bancos de Sangue/estatística & dados numéricos , Análise Química do Sangue , Doadores de Sangue/provisão & distribuição , Feminino , Humanos , Ferro/sangue , Masculino , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 110(4): 1440-5, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23302695

RESUMO

Fibrosis of vital organs is a major public health problem with limited therapeutic options. Mesenchymal cells including microvascular mural cells (pericytes) are major progenitors of scar-forming myofibroblasts in kidney and other organs. Here we show pericytes in healthy kidneys have active WNT/ß-catenin signaling responses that are markedly up-regulated following kidney injury. Dickkopf-related protein 1 (DKK-1), a ligand for the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP-5 and LRP-6) and an inhibitor of WNT/ß-catenin signaling, effectively inhibits pericyte activation, detachment, and transition to myofibroblasts in vivo in response to kidney injury, resulting in attenuated fibrogenesis, capillary rarefaction, and inflammation. DKK-1 blocks activation and proliferation of established myofibroblasts in vitro and blocks pericyte proliferation to PDGF, pericyte migration, gene activation, and cytoskeletal reorganization to TGF-ß or connective tissue growth factor. These effects are largely independent of inhibition of downstream ß-catenin signaling. DKK-1 acts predominantly by inhibiting PDGF-, TGF-ß-, and connective tissue growth factor-activated MAPK and JNK signaling cascades, acting via LRP-6 with associated WNT ligand. Biochemically, LRP-6 interacts closely with PDGF receptor ß and TGF-ß receptor 1 at the cell membrane, suggesting that it may have roles in pathways other than WNT/ß-catenin. In summary, DKK-1 blocks many of the changes in pericytes required for myofibroblast transition and attenuates established myofibroblast proliferation/activation by mechanisms dependent on LRP-6 and WNT ligands but not the downstream ß-catenin pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Pericitos/metabolismo , Pericitos/patologia , Animais , Becaplermina , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fibrose , Pontos de Checagem da Fase G1 do Ciclo Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pericitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
13.
Int J Ophthalmol ; 17(1): 97-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239945

RESUMO

AIM: To assess diabetic macular edema (DME) progression during the early phases of the COVID-19 pandemic, when severe societal restrictions raised the concern of possible deterioration of health in patients with systemic conditions, particularly those requiring frequent office visits. METHODS: This is a multicenter retrospective chart review of 370 patients (724 eyes) with an established diagnosis of DME seen on 3 separate visits between January 2019 and July 2021. Period 1 was January 2019 to February 2020 (considered pre-COVID-19), period 2 was March 2020 to December 2020 (considered the height of the pandemic; highest level of pandemic-related clinical and societal regulations) and period 3 was January 2021 to July 2021 (re-adjustment to the new "pandemic norms"). Main outcome measures included visual acuity, body mass index (BMI), blood pressure (BP), hemoglobin A1c (HbA1c), macular thickness, patient adherence to scheduled ophthalmology visits, and DME treatment(s) received at each visit. To facilitate measurement of macular thickness, each macula was divided into 9 Early Treatment Diabetic Retinopathy Study (ETDRS)-defined macular sectors as measured by OCT imaging. RESULTS: There was no change of BMI, systolic BP, and diastolic BP between any of the time periods. HbA1c showed a very small increase from period 1 (7.6%) to period 2 (7.8%, P=0.015) and decreased back to 7.6% at period 3 (P=0.12). Macular thickness decreased for 100% of macular regions. The central macular thickness decreased across all 3 periods from 329.5 to 316.6 µm (P=0.0045). After analysis of multiple variables including HbA1c, BMI, adherence to scheduled appointments, different clinic centers, and treatment interventions, there was no easily identifiable subgroup of patients that experienced the increase in DME. CONCLUSION: DME doesn't worsen during the COVID-19 pandemic, instead sustaining a very small but statistically significant improvement. While identifying a mechanism behind our findings is beyond the scope of this study, potential explanations may include a delay in retinal changes beyond our study period, an unexpected increase in treatment frequency despite pandemic restrictions, and an unanticipated pandemic-related improvement in some lifestyle factors that may have had a positive impact on DME.

14.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559182

RESUMO

Protein language models trained on evolutionary data have emerged as powerful tools for predictive problems involving protein sequence, structure, and function. However, these models overlook decades of research into biophysical factors governing protein function. We propose Mutational Effect Transfer Learning (METL), a protein language model framework that unites advanced machine learning and biophysical modeling. Using the METL framework, we pretrain transformer-based neural networks on biophysical simulation data to capture fundamental relationships between protein sequence, structure, and energetics. We finetune METL on experimental sequence-function data to harness these biophysical signals and apply them when predicting protein properties like thermostability, catalytic activity, and fluorescence. METL excels in challenging protein engineering tasks like generalizing from small training sets and position extrapolation, although existing methods that train on evolutionary signals remain powerful for many types of experimental assays. We demonstrate METL's ability to design functional green fluorescent protein variants when trained on only 64 examples, showcasing the potential of biophysics-based protein language models for protein engineering.

15.
Haematologica ; 98(8): 1324-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23445875

RESUMO

Dietary iron absorption is regulated by hepcidin, an iron regulatory protein produced by the liver. Hepcidin production is regulated by iron stores, erythropoiesis and inflammation, but its physiology when repeated blood loss occurs has not been characterized. Hepcidin was assayed in plasma samples obtained from 114 first-time/reactivated (no blood donations in preceding 2 years) female donors and 34 frequent (≥3 red blood cell donations in preceding 12 months) male donors as they were phlebotomized ≥4 times over 18-24 months. Hepcidin levels were compared to ferritin and hemoglobin levels using multivariable repeated measures regression models. Hepcidin, ferritin and hemoglobin levels declined with increasing frequency of donation in the first-time/reactivated females. Hepcidin and ferritin levels correlated well with each other (Spearman's correlation of 0.74), but on average hepcidin varied more between donations for a given donor relative to ferritin. In a multivariable repeated measures regression model the predicted inter-donation decline in hemoglobin varied as a function of hepcidin and ferritin; hemoglobin was 0.51 g/dL lower for subjects with low (>45.7 ng/mL) or decreasing hepcidin and low ferritin (>26 ng/mL), and was essentially zero for other subjects including those with high (>45.7 ng/mL) or increasing hepcidin and low ferritin (>26 ng/mL) levels (P<0.001). In conclusion, hepcidin levels change rapidly in response to dietary iron needed for erythropoiesis. The dynamic regulation of hepcidin in the presence of a low levels of ferritin suggests that plasma hepcidin concentration may provide clinically useful information about an individual's iron status (and hence capacity to tolerate repeated blood donations) beyond that of ferritin alone. Clinicaltrials.gov identifier: NCT00097006.


Assuntos
Doadores de Sangue , Hemoglobinas/metabolismo , Hepcidinas/sangue , Flebotomia/tendências , Adolescente , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Flebotomia/métodos , Valor Preditivo dos Testes , Fatores de Tempo , Adulto Jovem
16.
Rev Panam Salud Publica ; 34(6): 461-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24569976

RESUMO

OBJECTIVE: To systematically review and analyze various ways that health systems frameworks interact with the social determinants of health (SDH), as well as the implications of these interactions. METHODS: This was a review of the literature conducted in 2012 using predetermined criteria to search three comprehensive databases (PubMed, the Cochrane Database for Systematic Reviews, and the World Bank E-Library) and grey literature for articles with any consideration of the SDH within health systems frameworks. Snowball sampling and expert opinion were used to include any potentially relevant articles not identified by the initial search. In total, 4,152 documents were found; of these, 27 were included in the analyses. RESULTS: Five main categories of interaction between health systems and SDH emerged: Bounded, Production, Reciprocal, Joint, and Systems models. At one end were the Bounded and Production models, which conceive the SDH to be outside the health system; at the other end, the Joint and Systems models, which visualize a continuous and dynamic interaction. CONCLUSIONS: Considering the complex and dynamic interactions among different kinds of organizations involved in and with the health system,the Joint and Systems models seem to best reflect these interactions, and should thereby guide stakeholders in planning for change.


Assuntos
Atenção à Saúde , Serviços de Saúde/estatística & dados numéricos , Modelos Teóricos , Determinantes Sociais da Saúde , Integração de Sistemas , América , Relações Comunidade-Instituição , Setor de Assistência à Saúde/organização & administração , Administração de Serviços de Saúde , Humanos , Política Pública , Pesquisa Qualitativa , Meio Social
17.
ACS Synth Biol ; 12(9): 2600-2615, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37642646

RESUMO

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. Often, poor protein developability─quantified by expression, solubility, and stability─hinders utility. The ability to predict protein developability from amino acid sequence would reduce the experimental burden when selecting candidates. Recent advances in screening technologies enabled a high-throughput (HT) developability dataset for 105 of 1020 possible variants of protein ligand scaffold Gp2. In this work, we evaluate the ability of neural networks to learn a developability representation from a HT dataset and transfer this knowledge to predict recombinant expression beyond observed sequences. The model convolves learned amino acid properties to predict expression levels 44% closer to the experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid characteristics that influence protein developability.


Assuntos
Aminoácidos , Cisteína , Sequência de Aminoácidos , Redes Neurais de Computação , Engenharia de Proteínas
18.
ChemCatChem ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37954549

RESUMO

Aza-substitution, the replacement of aromatic CH groups with nitrogen atoms, is an established medicinal chemistry strategy for increasing solubility, but current methods of accessing functionalized azaindoles are limited. In this work, indole-alkylating aromatic prenyltransferases (PTs) were explored as a strategy to directly functionalize azaindole-substituted analogs of natural products. For this, a series of aza-l-tryptophans (Aza-Trp) featuring N-substitution of every aromatic CH position of the indole ring and their corresponding cyclic Aza-l-Trp-l-proline dipeptides (Aza-CyWP), were synthesized as substrate mimetics for the indole-alkylating PTs FgaPT2, CdpNPT, and FtmPT1. We then demonstrated most of these substrate analogs were accepted by a PT, and the regioselectivity of each prenylation was heavily influenced by the position of the N-substitution. Remarkably, FgaPT2 was found to produce cationic N-prenylpyridinium products, representing not only a new substrate class for indole PTs but also a previously unobserved prenylation mode. The discovery that nitrogenous indole bioisosteres can be accepted by PTs thus provides access to previously unavailable chemical space in the search for bioactive indolediketopiperazine analogs.

19.
Sci Rep ; 13(1): 8922, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264117

RESUMO

The intestinal epithelium comprises diverse cell types and executes many specialized functions as the primary interface between luminal contents and internal organs. A key function provided by the epithelium is maintenance of a barrier that protects the individual from pathogens, irritating luminal contents, and the microbiota. Disruption of this barrier can lead to inflammatory disease within the intestinal mucosa, and, in more severe cases, to sepsis. Animal models to study intestinal permeability are costly and not entirely predictive of human biology. Here we present a model of human colon barrier function that integrates primary human colon stem cells into Draper's PREDICT96 microfluidic organ-on-chip platform to yield a high-throughput system appropriate to predict damage and healing of the human colon epithelial barrier. We have demonstrated pharmacologically induced barrier damage measured by both a high throughput molecular permeability assay and transepithelial resistance. Using these assays, we developed an Inflammatory Bowel Disease-relevant model through cytokine induced damage that can support studies of disease mechanisms and putative therapeutics.


Assuntos
Colo , Doenças Inflamatórias Intestinais , Animais , Humanos , Modelos Animais de Doenças , Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Permeabilidade
20.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711449

RESUMO

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA