Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Phys Chem Chem Phys ; 26(24): 16947-16954, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38695758

RESUMO

Transition-metal dichalcogenides (TMDCs), including MoS2, have great potential in electronics applications. However, achieving low-resistance metal contacts is a challenge that impacts their performance in nanodevices due to strong Fermi-level pinning and the presence of a tunnelling barrier. As a solution, we explore a strategy of inserting monolayers of alkaline-earth sub-pnictide electrenes with a general formula of [M2X]+e- (M = Ca, Sr, Ba; X = N, P, As, Sb) between the TMDC and the metal. These electrenes possess two-dimensional sheets of charge on their surfaces that can be readily donated when interfaced with a TMDC semiconductor, thereby lowering its conduction band below the Fermi level and eliminating the Schottky and tunnelling barriers. In this work, density-functional theory (DFT) calculations were performed for metal/electrene/MoS2 heterojunctions for all stable M2X electrenes and both Au and Cu metals. To identify the material combinations that provide the most effective Ohmic contact, the charge transfer, band structure, and electrostatic potential were computed. Linear correlations were found between the charge donated to the MoS2 and both the electrene surface charge and work function. Overall, Ca2N appears to be the most promising electrene for achieving an Ohmic metal/MoS2 contact due to its high surface charge density.

2.
J Org Chem ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091599

RESUMO

A comparative experimental and computational study examining the interplay of the ancillary ligand structure and Ni oxidation state in the Ni-catalyzed C(sp2)-O cross-coupling of (hetero)aryl chlorides and primary or secondary aliphatic alcohols is presented, focusing on PAd-DalPhos (L1)-, CyPAd-DalPhos (L2)-, PAd2-DalPhos (L3)-, and DPPF (L4)-ligated [(L)NiCl]n (n = 1 or 2) and (L)Ni(o-tol)Cl precatalysts. Both L1 and L2 were found to outperform the other ligands examined, with the latter proving to be superior overall. While Ni(II) precatalysts generally outperformed Ni(I) species, in some instances the catalytic abilities of Ni(I) precatalysts were competitive with those of Ni(II). Density-functional theory calculations indicate the favorability of a Ni(0)/Ni(II) catalytic cycle featuring turnover-limiting C-O bond reductive elimination over a Ni(I)/Ni(III) cycle involving turnover-limiting C-Cl oxidative addition.

3.
J Phys Chem A ; 127(41): 8712-8722, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37793049

RESUMO

While density-functional theory (DFT) remains one of the most widely used tools in computational chemistry, most functionals fail to properly account for the effects of London dispersion. Hence, there are many popular post-self-consistent methods to add a dispersion correction to the DFT energy. Until now, the most popular methods have never been compared on equal footing due to not being implemented in the same electronic structure packages. In this work, we performed a large-scale benchmarking study, directly comparing the accuracy of the exchange-hole dipole moment (XDM), D3BJ, D4, TS, MBD, and MBD-NL dispersion models when applied to the recent DES15K database of nearly 15,000 molecular complexes at both expanded and compressed geometries. Our study showed similarly good performance for all dispersion methods (except TS) when applied to neutral complexes. However, they all performed worse for ionic complexes, particularly those involving dications of alkaline earth metals, due to systematic overbinding by the base PBE0 density functional. Investigation of the largest outliers also revealed that only the MBD and MBD-NL methods demonstrate surprising errors for complexes involving alkali metal cations at compressed geometries where they tended to significantly overbind. As we would expect minimal dispersion binding for such complexes, we further investigated the origins of these errors for the potential energy curve of a model cation-π complex. Overall, there is little choice between the XDM, D3BJ, D4, MBD, and MBD-NL dispersion methods for most systems. However, the MBD-based methods are not recommended for complexes involving organic species and alkali or alkaline earth metal cations, for example when modeling Li+ intercalation into graphite.

4.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37218696

RESUMO

London dispersion is a weak, attractive, intermolecular force that occurs due to interactions between instantaneous dipole moments. While individual dispersion contributions are small, they are the dominating attractive force between nonpolar species and determine many properties of interest. Standard semi-local and hybrid methods in density-functional theory do not account for dispersion contributions, so a correction such as the exchange-hole dipole moment (XDM) or many-body dispersion (MBD) models must be added. Recent literature has discussed the importance of many-body effects on dispersion, and attention has turned to which methods accurately capture them. By studying systems of interacting quantum harmonic oscillators from first principles, we directly compare computed dispersion coefficients and energies from XDM and MBD and also study the influence of changing oscillator frequency. Additionally, the 3-body energy contributions for both XDM, via the Axilrod-Teller-Muto term, and MBD, via a random-phase approximation formalism, are calculated and compared. Connections are made to interactions between noble gas atoms as well as to the methane and benzene dimers and to two layered materials, graphite and MoS2. While XDM and MBD give similar results for large separations, some variants of MBD are found to be susceptible to a polarization catastrophe at short range, and the MBD energy calculation is seen to fail in some chemical systems. Additionally, the self-consistent screening formalism used in MBD is shown to be surprisingly sensitive to the choice of input polarizabilities.

5.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37909456

RESUMO

Layered electrides are a unique class of materials with anionic electrons bound in interstitial regions between thin, positively charged atomic layers. While density-functional theory is the tool of choice for computational study of electrides, there has to date been no systematic comparison of density functionals or dispersion corrections for their accurate simulation. There has also been no research into the thermomechanical properties of layered electrides, with computational predictions considering only static lattices. In this work, we investigate the thermomechanical properties of five layered electrides using density-functional theory to evaluate the magnitude of thermal effects on their lattice constants and cell volumes. We also assess the accuracy of five popular dispersion corrections with both planewave and numerical atomic orbital calculations.

6.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269074

RESUMO

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Assuntos
Ciência dos Materiais , Humanos
7.
J Chem Phys ; 156(11): 114108, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35317597

RESUMO

Many crystal structure prediction protocols only concern themselves with the electronic energy of molecular crystals. However, vibrational contributions to the free energy (Fvib) can be significant in determining accurate stability rankings for crystal candidates. While force-field studies have been conducted to gauge the magnitude of these free-energy corrections, highly accurate results from quantum mechanical methods, such as density-functional theory (DFT), are desirable. Here, we introduce the PV17 set of 17 polymorphic pairs of organic molecular crystals, for which plane wave DFT is used to calculate the vibrational free energies and free-energy differences (ΔFvib) between each pair. Our DFT results confirm that the vibrational free-energy corrections are small, having a mean value of 1.0 kJ/mol and a maximum value of 2.3 kJ/mol for the PV17 set. Furthermore, we assess the accuracy of a series of lower-cost DFT, semi-empirical, and force-field models for computing ΔFvib that have been proposed in the literature. It is found that calculating Fvib using the Γ-point frequencies does not provide ΔFvib values of sufficiently high quality. In addition, ΔFvib values calculated using various approximate methods have mean absolute errors relative to our converged DFT results of equivalent or larger magnitude than the vibrational free-energy corrections themselves. Thus, we conclude that, in a crystal structure prediction protocol, it is preferable to forego the inclusion of vibrational free-energy corrections than to estimate them with any of the approximate methods considered here.

8.
J Phys Chem A ; 125(13): 2791-2799, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764761

RESUMO

High-throughput computational studies of lanthanide and actinide chemistry with density-functional theory are complicated by the need for Hubbard U corrections, which ensure localization of the f-electrons, but can lead to metastable states. This work presents a systematic investigation of the effects of both Hubbard U value and metastable states on the predicted structural and thermodynamic properties of four uranium compounds central to the field of nuclear fuels: UC, UN, UO2, and UCl3. We also assess the impact of the exchange-hole dipole moment (XDM) dispersion correction on the computed properties. Overall, the choice of Hubbard U value and inclusion of a dispersion correction cause larger variations in the computed geometric properties than result from metastable states. The weak dependence of structure optimization on metastable states should simplify future high-throughput calculations on actinides. Conversely, addition of the dispersion correction is found to offset the repulsion introduced by the Hubbard U term and provides greatly improved agreement with experiment for both cell volumes and heats of formation. The XDM dispersion correction is largely invariant to the chosen U value, making it a robust dispersion correction for actinide systems.

9.
J Chem Phys ; 154(23): 230902, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241263

RESUMO

Post-self-consistent dispersion corrections are now the norm when applying density-functional theory to systems where non-covalent interactions play an important role. However, there is a wide range of base functionals and dispersion corrections available from which to choose. In this work, we opine on the most desirable requirements to ensure that both the base functional and dispersion correction, individually, are as accurate as possible for non-bonded repulsion and dispersion attraction. The base functional should be dispersionless, numerically stable, and involve minimal delocalization error. Simultaneously, the dispersion correction should include finite damping, higher-order pairwise dispersion terms, and electronic many-body effects. These criteria are essential for avoiding reliance on error cancellation and obtaining correct results from correct physics.

10.
Angew Chem Int Ed Engl ; 60(3): 1546-1549, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32970365

RESUMO

Recent density-functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high-accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE-25X-XDM//B86bPBE-XDM and PBE0-XDM//PBE-XDM results overlap with the experimental -TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are Δf Ho =-2150±150 J mol-1 , Δf So =3.44±0.03 J K-1 mol-1 and Δf Go =-3170±150 J mol-1 .

11.
Biochemistry ; 59(33): 3026-3037, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786399

RESUMO

Boronic acids have been successfully employed as inhibitors of hydrolytic enzymes. Typically, an enzymatic nucleophile catalyzing hydrolysis adds to the electrophilic boron atom forming a tetrahedral species that mimics the intermediate(s)/transition state(s) for the hydrolysis reaction. We show that para-substituted phenylboronic acids (PBAs) are potent competitive inhibitors of mandelate racemase (MR), an enzyme that catalyzes a 1,1-proton transfer rather than a hydrolysis reaction. The Ki value for PBA was 1.8 ± 0.1 µM, and p-Cl-PBA exhibited the most potent inhibition (Ki = 81 ± 4 nM), exceeding the binding affinity of the substrate by ∼4 orders of magnitude. Isothermal titration calorimetric studies with the wild-type, K166M, and H297N MR variants indicated that, of the two Brønsted acid-base catalysts Lys 166 and His 297, the former made the greater contribution to inhibitor binding. The X-ray crystal structure of the MR·PBA complex revealed the presence of multiple H-bonds between the boronic acid hydroxyl groups and the side chains of active site residues, as well as formation of a His 297 Nε2-B dative bond. The dramatic upfield change in chemical shift of 27.2 ppm in the solution-phase 11B nuclear magnetic resonance spectrum accompanying binding of PBA by MR was consistent with an sp3-hybridized boron, which was also supported by density-functional theory calculations. These unprecedented findings suggest that, beyond substituting boron at carbon centers participating in hydrolysis reactions, substitution of boron at the acidic carbon center of a substrate furnishes a new approach for generating inhibitors of enzymes catalyzing the deprotonation of carbon acid substrates.


Assuntos
Boro/farmacologia , Ácidos Borônicos/farmacologia , Racemases e Epimerases/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Boro/química , Ácidos Borônicos/farmacocinética , Carbono/química , Carbono/farmacocinética , Carbono/farmacologia , Ácido Carbônico/química , Ácido Carbônico/farmacologia , Catálise/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
12.
J Comput Chem ; 41(5): 427-438, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31512279

RESUMO

Targeted covalent inhibitor drugs require computational methods that go beyond simple molecular-mechanical force fields in order to model the chemical reactions that occur when they bind to their targets. Here, several semiempirical and density-functional theory (DFT) methods are assessed for their ability to describe the potential energy surface and reaction energies of the covalent modification of a thiol by an electrophile. Functionals such as PBE and B3LYP fail to predict a stable enolate intermediate. This is largely due to delocalization error, which spuriously stabilizes the prereaction complex, in which excess electron density is transferred from the thiolate to the electrophile. Functionals with a high-exact exchange component, range-separated DFT functionals, and variationally optimized exact exchange (i.e., the LC-B05minV functional) correct this issue to various degrees. The large gradient behavior of the exchange enhancement factor is also found to significantly affect the results, leading to the improved performance of PBE0. While ωB97X-D and M06-2X were reasonably accurate, no method provided quantitative accuracy for all three electrophiles, making this a very strenuous test of functional performance. Additionally, one drawback of M06-2X was that molecular dynamics (MD) simulations using this functional were only stable if a fine integration grid was used. The low-cost semiempirical methods, PM3, AM1, and PM7, provide a qualitatively correct description of the reaction mechanism, although the energetics is not quantitatively reliable. As a proof of concept, the potential of mean force for the addition of methylthiolate to methylvinyl ketone was calculated using quantum mechanical/molecular mechanical MD in an explicit polarizable aqueous solvent. © 2019 Wiley Periodicals, Inc.


Assuntos
Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Compostos de Sulfidrila/química , Estrutura Molecular
13.
Chemistry ; 26(71): 17134-17142, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32706129

RESUMO

The addition of Sb-H bonds to alkynes was reported recently as a new hydroelementation reaction that exclusively yields anti-Markovnikov Z-olefins from terminal acetylenes. We examine four possible mechanisms that are consistent with the observed stereochemical and regiochemical outcomes. A comprehensive analysis of solvent, substituent, isotope, additive, and temperature effects on hydrostibination reaction rates definitively refutes three ionic mechanisms involving closed-shell charged intermediates. Instead the data support a fourth pathway featuring open-shell neutral intermediates. Density-functional theory (DFT) calculations are consistent with this model, predicting an activation barrier that is in agreement with the experimental value (Eyring analysis) and a rate limiting step that is congruent with the experimental kinetic isotope effect. We therefore conclude that hydrostibination of arylacetylenes is initiated by the generation of stibinyl radicals, which then participate in a cycle featuring SbII and SbIII intermediates to yield the observed Z-olefins as products. This mechanistic understanding will enable rational evolution of hydrostibination as a synthetic methodology.

14.
Phys Chem Chem Phys ; 22(29): 16571-16578, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658226

RESUMO

Chiral mineral surfaces, such as quartz, are attractive substrates for use in enantioselective separation and may have contributed to the origin of biological homochirality. In this work, we apply density-functional theory and the exchange-hole dipole moment (XDM) dispersion model to study the adsorption of 5 amino acids (glycine, serine, alanine, valine, and phenylalanine) on a hydroxylated α-quartz (0001) surface. It is demonstrated that London dispersion is responsible for 30-50% of the total adsorption energies and its inclusion or omission can reverse predictions of enantioselectivity. Differing dispersion stabilization, caused by the opposing side-chain placements relative to the quartz surface, lead to differences of 1.0 and 1.8 kcal mol-1 in the adsorption energies of the alanine and phenylalanine enantiomers, respectively. These results are consistent with a 3-point model, with the hydrogen-bonding sites conserved and variations in the dispersion interactions determining enantioselectivity.


Assuntos
Aminoácidos/química , Modelos Químicos , Quartzo/química , Adsorção , Hidroxilação , Estereoisomerismo
15.
Phys Chem Chem Phys ; 22(16): 8266-8276, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285886

RESUMO

Inclusion of dispersion effects in density-functional calculations is now standard practice in computational chemistry. In many dispersion models, the dispersion energy is written as a sum of pairwise atomic interactions consisting of a damped asymptotic expansion from perturbation theory. There has been much recent attention drawn to the importance of "many-body" dispersion effects, which by their name imply limitations with a pairwise atomic expansion. In this perspective, we clarify what is meant by many-body dispersion, as this term has previously referred to two very different physical phenomena, here classified as electronic and atomic many-body effects. Atomic many-body effects refer to the terms in the perturbation-theory expansion of the dispersion energy involving more than two atoms, the leading contribution being the Axilrod-Teller-Muto three-body term. Conversely, electronic many-body effects refer to changes in the dispersion coefficients of the pairwise terms induced by the atomic environment. Regardless of their nature, many-body effects cause pairwise non-additivity in the dispersion energy, such that the dispersion energy of a system does not equal the sum of the dispersion energies of its atomic pairs taken in isolation. A series of examples using the exchange-hole dipole moment (XDM) method are presented to assess the relative importance of electronic and atomic many-body effects on the dispersion energy. Electronic many-body effects can result in variation in the leading-order C6 dispersion coefficients by as much as 50%; hence, their inclusion is critical for good performance of a pairwise asymptotic dispersion correction. Conversely, atomic many-body effects represent less than 1% of the total dispersion energy and are much less significant than higher-order (C8 and C10) pairwise terms. Their importance has been previously overestimated through empirical fitting, where they can offset underlying errors stemming either from neglect of higher-order pairwise terms or from the base density functional.

16.
J Phys Chem A ; 124(2): 353-361, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31846333

RESUMO

The study of the structure and chemistry of biological systems with density-functional theory requires an accurate description of intermolecular interactions involving charged moieties. While dispersion-corrected functionals accurately model noncovalent interactions in neutral systems, a systematic study of the performance and errors associated with intermolecular interactions between charged fragments is missing. We undertake this study by examining the performance of a series of dispersion-corrected functionals with varying degrees of exact exchange for the side-chain protein interactions from the BioFragment Database (BFDb) of Burns et al. (the SSI set). In general, hybrid functionals with 20-30% exact exchange are accurate across the board, with the lowest mean absolute errors of 0.11 kcal/mol obtained from the 20% exact-exchange BLYP and PW86PBE hybrids coupled with the exchange-hole dipole moment (XDM) dispersion model. In addition, our analysis shows that functionals with higher exact-exchange fractions overestimate the electrostatic contributions to the binding energies, and that GGA functionals overestimate zwitterion binding energies due to delocalization error and overestimated charge transfer. In addition, the (quite large) repulsion in the dications is systematically overestimated by all functionals, and the trends for the monoanionic and dianionic dimers can be successfully explained by appealing to the ability of the underlying GGA to describe Pauli repulsion, as given by its exchange enhancement factor. Going beyond studies of biomolecules, this latter result has important implications for selecting appropriate GGA functionals for applications to ionic solids and layered materials containing anion-anion interactions.

17.
J Chem Phys ; 153(5): 054121, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770899

RESUMO

Dispersion corrections are essential in the description of intermolecular interactions; however, dispersion-corrected functionals must also be transferrable to hard solids. The exchange-hole dipole moment (XDM) model has demonstrated excellent performance for non-covalent interactions. In this article, we examine its ability to describe the relative stability, geometry, and compressibility of simple ionic solids. For the specific cases of the cesium halides, XDM-corrected functionals correctly predict the energy ranking of the B1 and B2 forms, and a dispersion contribution is required to obtain this result. Furthermore, for the lattice constants of the 20 alkali halides, the performance of XDM-corrected functionals is excellent, provided that the base functional's exchange enhancement factor properly captures non-bonded repulsion. The mean absolute errors in lattice constants obtained with B86bPBE-XDM and B86bPBE-25X-XDM are 0.060 Å and 0.039 Å, respectively, suggesting that delocalization error also plays a minor role in these systems. Finally, we considered the calculation of bulk moduli for alkali halides and alkaline-earth oxides. Previous claims in the literature that simple generalized gradient approximations, such as PBE, can reliably predict experimental bulk moduli have benefited from large error cancellations between neglecting both dispersion and vibrational effects. If vibrational effects are taken into account, dispersion-corrected functionals are quite accurate (4 GPa-5 GPa average error), again, if non-bonded repulsion is correctly represented. Careful comparisons of the calculated bulk moduli with experimental data are needed to avoid systematic biases and misleading conclusions.

18.
J Chem Phys ; 152(23): 234106, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571029

RESUMO

Piezochromic materials, whose luminescence responds to external pressure, have recently garnered much experimental attention. Computational modeling of piezochromism is of high theoretical interest, yet currently lacking. Herein, we present a computational effort to predict the piezochromism for a selection of molecular crystals. The current methodology employs a combination of dispersion-corrected solid-state and gas-phase density-functional theory and Becke's virial exciton model. Our study finds that piezochromism is primarily driven by the modification of intermolecular interactions within the molecular crystal and can be understood from the perspectives of changing polarizability or bandgaps upon the application of mechanical pressure.

19.
Nano Lett ; 19(8): 5496-5505, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31267757

RESUMO

Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.

20.
Phys Chem Chem Phys ; 20(41): 26710-26718, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324211

RESUMO

Alkalides are crystalline salts in which the anion is a negatively charged alkali metal. A systematic investigation of the electronic structure of thirteen alkalides, with known crystal structures, is conducted using density-functional theory. For each alkalide, a high-lying valence state is identified that is localised on the alkali anions and is consistent with the low band gap and strong reducing power characteristic of these materials. This 'alkalide state' is compared to a similar state in the related class of electride materials, where the alkali anions are replaced by crystal voids occupied by localised, interstitial electrons. Finally, a thermodynamic cycle is constructed to examine the energy differences between the alkalides and electrides, revealing that the alkali-metal anion significantly stabilises the crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA