Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Clin Infect Dis ; 78(2): 453-456, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37805935

RESUMO

Chagas disease (CD), caused by Trypanosoma cruzi, is underdiagnosed in the United States. Improved screening strategies are needed, particularly for people at risk for life-threatening sequelae of CD, including people with human immunodeficiency virus (HIV, PWH). Here we report results of a CD screening strategy applied at a large HIV clinic serving an at-risk population.


Assuntos
Doença de Chagas , Infecções por HIV , Trypanosoma cruzi , Humanos , Estados Unidos/epidemiologia , HIV , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Doença de Chagas/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções por HIV/complicações
2.
Biol Reprod ; 109(6): 812-820, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37688580

RESUMO

Embryo morphokinetic analysis through time-lapse embryo imaging is envisioned as a method to improve selection of developmentally competent embryos. Morphokinetic analysis could be utilized to evaluate the effects of experimental manipulation on pre-implantation embryo development. The objectives of this study were to establish a normative morphokinetic database for in vitro fertilized rhesus macaque embryos and to assess the impact of atypical initial cleavage patterns on subsequent embryo development and formation of embryo outgrowths. The cleavage pattern and the timing of embryo developmental events were annotated retrospectively for unmanipulated in vitro fertilized rhesus macaque blastocysts produced over four breeding seasons. Approximately 50% of the blastocysts analyzed had an abnormal early cleavage event. The time to the initiation of embryo compaction and the time to completion of hatching was significantly delayed in blastocysts with an abnormal early cleavage event compared to blastocysts that had cleaved normally. Embryo hatching, attachment to an extracellular matrix, and growth during the implantation stage in vitro was not impacted by the initial cleavage pattern. These data establish normative morphokinetic parameters for in vitro fertilized rhesus macaque embryos and suggest that cleavage anomalies may not impact embryo implantation rates following embryo transfer.


Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Animais , Macaca mulatta , Estudos Retrospectivos , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Embrião de Mamíferos , Implantação do Embrião , Blastocisto , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura Embrionária/veterinária , Técnicas de Cultura Embrionária/métodos
3.
Exp Parasitol ; 249: 108519, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004860

RESUMO

Leishmaniasis is a vector-borne neglected tropical disease caused by the Leishmania spp. Parasite. The disease is transmitted to humans and animals by the bite of infected female sandflies during the ingestion of bloodmeal. Because current drug treatments induce toxicity and parasite resistance, there is an urgent need to evaluate new drugs. Most therapeutics target the differentiation of promastigotes to amastigotes, which is necessary to maintain Leishmania infection. However, in vitro assays are laborious, time-consuming, and depend on the experience of the technician. In this study, we aimed to establish a short-term method to assess the differentiation status of Leishmania mexicana (L. mexicana) using flow cytometry. Here, we showed that flow cytometry provides a rapid means to quantify parasite differentiation in cell culture as reliably as light microscopy. Interestingly, we found using flow cytometry that miltefosine reduced promastigote-to-amastigote differentiation of L. mexicana. We conclude that flow cytometry provides a means to rapidly assay the efficacy of small molecules or natural compounds as potential anti-leishmanials.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Animais , Feminino , Leishmania mexicana/fisiologia , Citometria de Fluxo , Diferenciação Celular
4.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931906

RESUMO

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Proteínas de Bactérias , Citrus/microbiologia , Grupo dos Citocromos b , Ferritinas , Liberibacter , Lipopolissacarídeos/metabolismo , Estresse Nitrosativo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/metabolismo
5.
Plant J ; 102(2): 311-326, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31782853

RESUMO

The formation of nitrogen-fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen-fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin-motif receptor-like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild-type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild-type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan-defective strains was achieved by in trans rescue with a Nod factor-deficient S. meliloti mutant. While the Nod factor-deficient strain was always more abundant inside nodules, the succinoglycan-deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.


Assuntos
Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose , Medicago truncatula/enzimologia , Medicago truncatula/genética , Peso Molecular , Mutação , Fixação de Nitrogênio , Fenótipo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas de Plantas/genética , Polissacarídeos Bacterianos/genética , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética
6.
Mol Plant Microbe Interact ; 34(5): 461, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34138639

RESUMO

Plants live in a world filled with microbes, and spend their lives engaged in the delicate dance of nurturing beneficial interactions while simultaneously reducing disease-causing interactions. How do plants engage with beneficial microorganisms while at the same time restricting pathogens? was recently selected in a crowd-sourced effort as the top, unanswered question in the field of molecular plant-microbe interactions. Elaborating on this question and setting the stage for this focus issue, the Top10 review by Thoms, Liang and Haney examines the way multiple inputs are integrated to initiate programs of immunity or mutualistic symbiosis, and how this shapes the microbiome. This comprehensive review describes the current landscape of the field, focusing on the plant-microbe-soil continuum, but providing ideas for extending these concepts to leaves, where much of the research on immunity has centered. Other papers in this issue examine the simultaneous interaction of plants with beneficial and pathogenic microorganisms, as well as many diverse relationships with beneficial microbes that can improve plant health by increasing access to nutrients or by decreasing disease.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Microbiota , Plantas , Solo , Simbiose
7.
Mol Plant Microbe Interact ; 33(12): 1354-1365, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33106084

RESUMO

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago. The MPMI Editorial Board felt it was time to take stock and reassess. What big questions remain unanswered? We knew that to identify the fundamental, overarching questions that drive our research, we needed to do this as a community. To reach a diverse audience of people with different backgrounds and perspectives, working in different areas of plant-microbe interactions, we queried the more than 1,400 participants at the 2019 International Congress on Molecular Plant-Microbe Interactions meeting in Glasgow. This group effort resulted in a list of ten, broad-reaching, fundamental questions that influence and inform our research. Here, we introduce these Top 10 unanswered questions, giving context and a brief description of the issues. Each of these questions will be the subject of a detailed review in the coming months. We hope that this process of reflecting on what is known and unknown and identifying the themes that underlie our research will provide a framework to use going forward, giving newcomers a sense of the mystery of the big questions and inspiring new avenues and novel insights.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Interações Hospedeiro-Patógeno , Plantas , Pesquisa , Interações Hospedeiro-Patógeno/genética , Plantas/genética , Plantas/microbiologia , Pesquisa/tendências
8.
Parasite Immunol ; 42(10): e12769, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592180

RESUMO

E6020 is a synthetic agonist of Toll-like receptor-4 (TLR4). The purpose of this study was to evaluate the effect of different doses of E6020-SE on Trypanosoma cruzi-specific immune responses and its ability to confer protection against acute lethal infection in mice. Forty female BALB/c were infected with 500 trypomastigotes of T cruzi H1 strain, divided into four groups (n = 10) and treated at 7- and 14-day post-infection (dpi) with different doses of E6020-SE or PBS (control). Survival was followed for 51 days, mice were euthanized and hearts were collected to evaluate parasite burden, inflammation and fibrosis. We found significantly higher survival and lower parasite burdens in mice injected with E6020-SE at all doses compared to the control group. However, E6020-SE treatment did not significantly reduce cardiac inflammation or fibrosis. On the other hand, E6020-SE modulated Th1 and Th2 cytokines, decreasing IFN-γ and IL-4 in a dose-dependent manner after stimulation with parasite antigens. We conclude that E6020-SE alone increased survival by decreasing cardiac parasite burdens in BALB/c mice acutely infected with T cruzi but failed to prevent cardiac damage. Our results suggest that for optimal protection, a vaccine antigen is necessary to balance and orient a protective immune response.


Assuntos
Doença de Chagas/tratamento farmacológico , Fosfolipídeos/uso terapêutico , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Doença de Chagas/imunologia , Citocinas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Trypanosoma cruzi/imunologia
9.
Am J Eval ; 41(4)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34733100

RESUMO

Despite advances in the sexual violence (SV) prevention field, practitioners still face challenges with identifying indicators to measure the impact of their prevention strategies. Public data, such as existing administrative and surveillance system data, may be a good option for organizations to examine trends in indicators for the purpose of program evaluation. In this article, we describe a framework and a process for identifying indicators with public data. Specifically, we present the SV Indicator Framework and a five-step indicator review process, which we used to identify indicators for a national SV prevention program. We present the findings of the indicator review and explain how the process could be used by evaluators and program planners within other developing topic areas. Tracking indicators with public data, in conjunction with other evaluation methods, may be a viable option for state-level program evaluations. We discuss limitations and implications for practice and research.

10.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420343

RESUMO

Liberibacter crescens is the only cultured member of its genus, which includes the devastating plant pathogen "Candidatus Liberibacter asiaticus," associated with citrus greening/Huanglongbing (HLB). L. crescens has a larger genome and greater metabolic flexibility than "Ca Liberibacter asiaticus" and the other uncultured plant-pathogenic Liberibacter species, and it is currently the best model organism available for these pathogens. L. crescens grows slowly and dies rapidly under current culture protocols and this extreme fastidiousness makes it challenging to study. We have determined that a major cause of rapid death of L. crescens in batch culture is its alkalinization of the medium (to pH 8.5 by the end of logarithmic phase). The majority of this alkalinization is due to consumption of alpha-ketoglutaric acid as its primary carbon source, with a smaller proportion of the pH rise due to NH3 production. Controlling the pH rise with higher buffering capacity and lower starting pH improved recoverability of cells from 10-day cultures by >1,000-fold. We have also performed a detailed analysis of L. crescens growth with total cell numbers calibrated to the optical density and the percentage of live and recoverable bacteria determined over 10-day time courses. We modified L. crescens culture conditions to greatly enhance survival and increase maximum culture density. The similarities between L. crescens and the pathogenic liberibacters make this work relevant to efforts to culture the latter organisms. Our results also suggest that growth-dependent pH alteration that overcomes medium buffering should always be considered when growing fastidious bacteria.IMPORTANCELiberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by "Candidatus Liberibacter asiaticus" and carried by the Asian citrus psyllid. L. crescens is the only close relative of "Ca Liberibacter asiaticus" that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens.


Assuntos
Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/crescimento & desenvolvimento , Amônia/metabolismo , Animais , Técnicas de Cultura Celular por Lotes , Meios de Cultura/química , Hemípteros/microbiologia , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/metabolismo , Liberibacter , Viabilidade Microbiana , Rhizobiaceae/classificação , Rhizobiaceae/genética
11.
Parasite Immunol ; 40(11): e12585, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30132929

RESUMO

Trypanosoma cruzi 24 (Tc24) is a recently described B-cell superantigen (BC-SAg) expressed by all developmental stages of T. cruzi, the causative agent of Chagas disease. BC-SAgs are immunoevasins that interfere with the catalytic response available to a subset of natural antibodies comprising the preimmune (innate) repertoire. Electrophilic modifications of BC-SAgs facilitate the formation of highly energetic covalent reactions favouring B-cell differentiation instead of B-cell downregulation. Therefore, the aim of this study was to convert the inhibitory signals delivered to B-cells with specificity for Tc24 into activating signals after conjugating electrophilic phosphonate groups to recombinant Tc24 (eTc24). Covalent immunization with eTc24 increased the binding affinity between eTc24 and naturally nucleophilic immunoglobulins with specificity for this BC-SAg. Flow cytometric analyses demonstrated that eTc24 but not Tc24 or other electrophilically modified control proteins bound Tc24-specific IgM+ B-cells covalently. In addition, immunization of mice with eTc24 adjuvanted with ISA720 induced the production of catalytic responses specific for Tc24 compared to the abrogation of this response in mice immunized with Tc24/ISA720. eTc24-immunized mice also produced IgMs that bound recombinant Tc24 compared to the binding observed for IgMs purified from non eTc24-immunized controls. These data suggest that eTc24 immunization overrides the immunosuppressive properties of this BC-SAg.


Assuntos
Anticorpos Catalíticos/imunologia , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/imunologia , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/imunologia , Animais , Anticorpos Antiprotozoários/química , Formação de Anticorpos , Linfócitos B/imunologia , Doença de Chagas/diagnóstico , Doença de Chagas/parasitologia , Feminino , Humanos , Imunização , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/química , Trypanosoma cruzi/química , Trypanosoma cruzi/genética , Vacinação
12.
J Struct Biol ; 200(3): 343-359, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842338

RESUMO

Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups.


Assuntos
Bacteriófagos/química , Bacteriófagos/genética , Capsídeo/química , Genoma Viral , Sinorhizobium meliloti/virologia , Bacteriófagos/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Endodesoxirribonucleases/genética , Genes Bacterianos , Processamento de Imagem Assistida por Computador/métodos , Fases de Leitura Aberta , Filogenia , Proteínas Virais/metabolismo , Vírion
13.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674032

RESUMO

Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8+ gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8+ IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cardiomiopatia Chagásica/terapia , Imunoterapia/métodos , Vacinas/imunologia , Adenoviridae/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Cardiomiopatia Chagásica/prevenção & controle , Células Dendríticas/imunologia , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Vetores Genéticos , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Transdução Genética , Resultado do Tratamento , Vacinas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
14.
J Virol ; 89(21): 10945-58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311868

RESUMO

UNLABELLED: Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE: Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.


Assuntos
Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Capsídeo/fisiologia , Genoma Viral/genética , Modelos Moleculares , Sinorhizobium meliloti/virologia , Bacteriófagos/química , Bacteriófagos/classificação , Sequência de Bases , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie
15.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730612

RESUMO

High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.

16.
ACS Appl Mater Interfaces ; 16(13): 15832-15846, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518375

RESUMO

Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Camundongos , Animais , RNA , Distribuição Tecidual , Doença de Chagas/prevenção & controle , Antígenos de Protozoários/genética , RNA Mensageiro , Tecnologia
17.
Mol Plant Microbe Interact ; 26(9): 1089-105, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23656330

RESUMO

The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The ß-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.


Assuntos
Glicosídeo Hidrolases/genética , Medicago sativa/microbiologia , Medicago truncatula/microbiologia , Sinorhizobium meliloti/enzimologia , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Teste de Complementação Genética , Glicosídeo Hidrolases/metabolismo , Mutação , Fixação de Nitrogênio , Fenótipo , Nodulação , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Polissacarídeos Bacterianos/metabolismo , Proteínas Recombinantes de Fusão , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia
18.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503013

RESUMO

Background: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. Methodology: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. Results: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. Conclusions: These data confirm toxicity associated with curative doses of BNZ and suggest that the dose sparing low BNZ plus vaccine treatment better preserves liver health.

19.
Cell Host Microbe ; 31(3): 343-355.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893733

RESUMO

There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Replicação do DNA
20.
Microbiol Spectr ; 11(3): e0019923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140369

RESUMO

Alterations caused by Trypanosoma cruzi in the composition of gut microbiome may play a vital role in the host-parasite interactions that shapes physiology and immune responses against infection. Thus, a better understanding of this parasite-host-microbiome interaction may yield relevant information in the comprehension of the pathophysiology of the disease and the development of new prophylactic and therapeutic alternatives. Therefore, we implemented a murine model with two mice strains (BALB/c and C57BL/6) to evaluate the impact of Trypanosoma cruzi (Tulahuen strain) infection on the gut microbiome utilizing cytokine profiling and shotgun metagenomics. Higher parasite burdens were observed in cardiac and intestinal tissues, including changes in anti-inflammatory (interleukin-4 [IL-4] and IL-10) and proinflammatory (gamma interferon, tumor necrosis factor alpha, and IL-6) cytokines. Bacterial species such as Bacteroides thetaiotaomicron, Faecalibaculum rodentium, and Lactobacillus johnsonii showed a decrease in relative abundance, while Akkermansia muciniphila and Staphylococcus xylosus increased. Likewise, as infection progressed, there was a decrease in gene abundances related to metabolic processes such as lipid synthesis (including short-chain fatty acids) and amino acid synthesis (including branched-chain amino acids). High-quality metagenomic assembled genomes of L. johnsonii and A. muciniphila among other species were reconstructed, confirming, functional changes associated with metabolic pathways that are directly affected by the loss of abundance of specific bacterial taxa. IMPORTANCE Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, presenting acute and chronic phases where cardiomyopathy, megaesophagus, and/or megacolon stand out. During the course of its life cycle, the parasite has an important gastrointestinal tract transit that leads to severe forms of CD. The intestinal microbiome plays an essential role in the immunological, physiological, and metabolic homeostasis of the host. Therefore, parasite-host-intestinal microbiome interactions may provide information on certain biological and pathophysiological aspects related to CD. The present study proposes a comprehensive evaluation of the potential effects of this interaction based on metagenomic and immunological data from two mice models with different genetic, immunological, and microbiome backgrounds. Our findings suggest that there are alterations in the immune and microbiome profiles that affect several metabolic pathways that can potentially promote the infection's establishment, progression, and persistence. In addition, this information may prove essential in the research of new prophylactic and therapeutic alternatives for CD.


Assuntos
Doença de Chagas , Microbiota , Trypanosoma cruzi , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doença de Chagas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA