Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
Cell ; 185(11): 1905-1923.e25, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35523183

RESUMO

Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.


Assuntos
Neoplasias , Animais , Genes ras , Camundongos , Neoplasias/genética , Filogenia , Sequenciamento do Exoma
2.
Nature ; 626(7999): 611-616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297119

RESUMO

Precise control of cell division is essential for proper patterning and growth during the development of multicellular organisms. Coordination of formative divisions that generate new tissue patterns with proliferative divisions that promote growth is poorly understood. SHORTROOT (SHR) and SCARECROW (SCR) are transcription factors that are required for formative divisions in the stem cell niche of Arabidopsis roots1,2. Here we show that levels of SHR and SCR early in the cell cycle determine the orientation of the division plane, resulting in either formative or proliferative cell division. We used 4D quantitative, long-term and frequent (every 15 min for up to 48 h) light sheet and confocal microscopy to probe the dynamics of SHR and SCR in tandem within single cells of living roots. Directly controlling their dynamics with an SHR induction system enabled us to challenge an existing bistable model3 of the SHR-SCR gene-regulatory network and to identify key features that are essential for rescue of formative divisions in shr mutants. SHR and SCR kinetics do not align with the expected behaviour of a bistable system, and only low transient levels, present early in the cell cycle, are required for formative divisions. These results reveal an uncharacterized mechanism by which developmental regulators directly coordinate patterning and growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclo Celular , Raízes de Plantas , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Microscopia Confocal , Mutação
3.
Nature ; 627(8003): 389-398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253266

RESUMO

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Clonais/classificação , Células Clonais/citologia , Células Clonais/metabolismo , DNA Mitocondrial/genética , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Análise de Célula Única , Transcrição Gênica , Envelhecimento
4.
Immunity ; 51(6): 1102-1118.e7, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31757673

RESUMO

Young children are more susceptible to developing allergic asthma than adults. As neural innervation of the peripheral tissue continues to develop after birth, neurons may modulate tissue inflammation in an age-related manner. Here we showed that sympathetic nerves underwent a dopaminergic-to-adrenergic transition during post-natal development of the lung in mice and humans. Dopamine signaled through a specific dopamine receptor (DRD4) to promote T helper 2 (Th2) cell differentiation. The dopamine-DRD4 pathway acted synergistically with the cytokine IL-4 by upregulating IL-2-STAT5 signaling and reducing inhibitory histone trimethylation at Th2 gene loci. In murine models of allergen exposure, the dopamine-DRD4 pathway augmented Th2 inflammation in the lungs of young mice. However, this pathway operated marginally after sympathetic nerves became adrenergic in the adult lung. Taken together, the communication between dopaminergic nerves and CD4+ T cells provides an age-related mechanism underlying the susceptibility to allergic inflammation in the early lung.


Assuntos
Neurônios Adrenérgicos/citologia , Asma/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Pulmão/patologia , Células Th2/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Animais , Asma/imunologia , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Interleucina-2/metabolismo , Interleucina-4/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurogênese/fisiologia , Receptores de Dopamina D4/metabolismo , Fator de Transcrição STAT5/metabolismo , Sistema Nervoso Simpático/citologia
5.
Genome Res ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981681

RESUMO

Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in approximately 15% of early-stage cancers and 30% of late-stage cancers. EcDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy-number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, where the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graph have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together of complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose CoRAL (Complete Reconstruction of Amplifications with Long reads), for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 10 datasets from previously-characterized cell lines as compared to previous short and long-read based tools. As long-read usage becomes wide-spread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.

6.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38394243

RESUMO

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Assuntos
Transtornos Mentais , Transtornos do Sono-Vigília , Adulto Jovem , Adolescente , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Saúde Mental , Transtornos do Humor
7.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35333324

RESUMO

Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.


Assuntos
Leucoencefalopatias , Doenças Neurodegenerativas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Camundongos , Mutação/genética , Doenças Neurodegenerativas/patologia , Neuroglia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
8.
PLoS Pathog ; 19(4): e1011307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043515

RESUMO

Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Dengue , Animais , Vírus Chikungunya/fisiologia , Mosquitos Vetores
9.
Chem Rev ; 123(7): 3493-3542, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36948214

RESUMO

The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.

10.
Nature ; 570(7759): 77-82, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086336

RESUMO

Ontogeny describes the emergence of complex multicellular organisms from single totipotent cells. This field is particularly challenging in mammals, owing to the indeterminate relationship between self-renewal and differentiation, variation in progenitor field sizes, and internal gestation in these animals. Here we present a flexible, high-information, multi-channel molecular recorder with a single-cell readout and apply it as an evolving lineage tracer to assemble mouse cell-fate maps from fertilization through gastrulation. By combining lineage information with single-cell RNA sequencing profiles, we recapitulate canonical developmental relationships between different tissue types and reveal the nearly complete transcriptional convergence of endodermal cells of extra-embryonic and embryonic origins. Finally, we apply our cell-fate maps to estimate the number of embryonic progenitor cells and their degree of asymmetric partitioning during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems, which will facilitate the construction of a quantitative framework for understanding developmental processes.


Assuntos
Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Endoderma/embriologia , Endoderma/metabolismo , Feminino , Fertilização , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Especificidade de Órgãos/genética , Fenótipo , Análise de Sequência de RNA , Análise de Célula Única
11.
Eur Heart J ; 45(3): 198-210, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37874971

RESUMO

BACKGROUND AND AIMS: Transcatheter pulmonary valve implantation (TPVI) is indicated to treat right-ventricular outflow tract (RVOT) dysfunction related to congenital heart disease (CHD). Outcomes of TPVI with the SAPIEN 3 valve that are insufficiently documented were investigated in the EUROPULMS3 registry of SAPIEN 3-TPVI. METHODS: Patient-related, procedural, and follow-up outcome data were retrospectively assessed in this observational cohort from 35 centres in 15 countries. RESULTS: Data for 840 consecutive patients treated in 2014-2021 at a median age of 29.2 (19.0-41.6) years were obtained. The most common diagnosis was conotruncal defect (70.5%), with a native or patched RVOT in 50.7% of all patients. Valve sizes were 20, 23, 26, and 29 mm in 0.4%, 25.5%, 32.1%, and 42.0% of patients, respectively. Valve implantation was successful in 98.5% [95% confidence interval (CI), 97.4%-99.2%] of patients. Median follow-up was 20.3 (7.1-38.4) months. Eight patients experienced infective endocarditis; 11 required pulmonary valve replacement, with a lower incidence for larger valves (P = .009), and four experienced pulmonary valve thrombosis, including one who died and three who recovered with anticoagulation. Cumulative incidences (95%CI) 1, 3, and 6 years after TPVI were as follows: infective endocarditis, 0.5% (0.0%-1.0%), 0.9% (0.2%-1.6%), and 3.8% (0.0%-8.4%); pulmonary valve replacement, 0.4% (0.0%-0.8%), 1.3% (0.2%-2.4%), and 8.0% (1.2%-14.8%); and pulmonary valve thrombosis, 0.4% (0.0%-0.9%), 0.7% (0.0%-1.3%), and 0.7% (0.0%-1.3%), respectively. CONCLUSIONS: Outcomes of SAPIEN 3 TPVI were favourable in patients with CHD, half of whom had native or patched RVOTs.


Assuntos
Endocardite Bacteriana , Endocardite , Cardiopatias Congênitas , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Insuficiência da Valva Pulmonar , Valva Pulmonar , Trombose , Adulto , Humanos , Cateterismo Cardíaco/efeitos adversos , Endocardite/epidemiologia , Endocardite Bacteriana/complicações , Cardiopatias Congênitas/complicações , Próteses Valvulares Cardíacas/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Desenho de Prótese , Valva Pulmonar/cirurgia , Insuficiência da Valva Pulmonar/epidemiologia , Insuficiência da Valva Pulmonar/cirurgia , Sistema de Registros , Estudos Retrospectivos , Trombose/etiologia , Resultado do Tratamento
12.
New Phytol ; 241(1): 283-297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897048

RESUMO

Cold stress is one of the major environmental factors that limit growth and yield of plants. However, it is still not fully understood how plants account for daily temperature fluctuations, nor how these temperature changes are integrated with other regulatory systems such as the circadian clock. We demonstrate that REVEILLE2 undergoes alternative splicing after chilling that increases accumulation of a transcript isoform encoding a MYB-like transcription factor. We explore the biological function of REVEILLE2 in Arabidopsis thaliana using a combination of molecular genetics, transcriptomics, and physiology. Disruption of REVEILLE2 alternative splicing alters regulatory gene expression, impairs circadian timing, and improves photosynthetic capacity. Changes in nuclear gene expression are particularly apparent in the initial hours following chilling, with chloroplast gene expression subsequently upregulated. The response of REVEILLE2 to chilling extends our understanding of plants immediate response to cooling. We propose that the circadian component REVEILLE2 restricts plants responses to nocturnal reductions in temperature, thereby enabling appropriate responses to daily environmental changes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Temperatura
13.
Bioconjug Chem ; 35(6): 732-736, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38739108

RESUMO

Hybrid materials that combine organic polymers and biomacromolecules offer unique opportunities for precisely controlling 3D chemical environments. Although biological or organic templates have been separately used to control the growth of inorganic nanoclusters, hybrid structures represent a relatively unexplored approach to tailoring nanocluster properties. Here, we demonstrate that a molecularly defined lysozyme-polymer resin material acts as a structural scaffold for the synthesis of copper nanoclusters (CuNCs) with well controlled size distributions. The resulting CuNCs have significantly enhanced fluorescence compared with syntheses based on polymeric or biological templates alone. The synergistic approach described here is appealing for the synthesis of biocompatible fluorescent labels with improved photostability.


Assuntos
Cobre , Muramidase , Polímeros , Muramidase/química , Cobre/química , Polímeros/química , Nanopartículas Metálicas/química , Fluorescência , Corantes Fluorescentes/química
14.
Insect Mol Biol ; 33(4): 362-371, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38450861

RESUMO

Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking. Specifically, previous work linked variation in Wolbachia pathogen blocking to polymorphisms in the mosquito alpha-mannosidase-2 (αMan2) gene. Here we use CRISPR-Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on both Wolbachia and virus levels, using dengue virus (DENV; Flaviviridae) and Mayaro virus (MAYV; Togaviridae). Wolbachia titres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. In Wolbachia-uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in a Wolbachia-infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication in Wolbachia-uninfected mosquitoes and did not affect Wolbachia-mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection in A. aegypti mosquitoes in a pathogen- and Wolbachia-specific manner, and that Wolbachia-mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use of Wolbachia-based strategies to control vector-borne pathogens.


Assuntos
Aedes , Wolbachia , alfa-Manosidase , Animais , Aedes/microbiologia , Aedes/virologia , Aedes/genética , Wolbachia/fisiologia , alfa-Manosidase/metabolismo , alfa-Manosidase/genética , Vírus da Dengue/fisiologia , Arbovírus/fisiologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Feminino , Infecções por Arbovirus/transmissão , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sistemas CRISPR-Cas
15.
Circ Res ; 130(3): 384-400, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012325

RESUMO

BACKGROUND: DNA hypomethylation at the F2RL3 (F2R like thrombin or trypsin receptor 3) locus has been associated with both smoking and atherosclerotic cardiovascular disease; whether these smoking-related associations form a pathway to disease is unknown. F2RL3 encodes protease-activated receptor 4, a potent thrombin receptor expressed on platelets. Given the role of thrombin in platelet activation and the role of thrombus formation in myocardial infarction, alterations to this biological pathway could be important for ischemic cardiovascular disease. METHODS: We conducted multiple independent experiments to assess whether DNA hypomethylation at F2RL3 in response to smoking is associated with risk of myocardial infarction via changes to platelet reactivity. Using cohort data (N=3205), we explored the relationship between smoking, DNA hypomethylation at F2RL3, and myocardial infarction. We compared platelet reactivity in individuals with low versus high DNA methylation at F2RL3 (N=41). We used an in vitro model to explore the biological response of F2RL3 to cigarette smoke extract. Finally, a series of reporter constructs were used to investigate how differential methylation could impact F2RL3 gene expression. RESULTS: Observationally, DNA methylation at F2RL3 mediated an estimated 34% of the smoking effect on increased risk of myocardial infarction. An association between methylation group (low/high) and platelet reactivity was observed in response to PAR4 (protease-activated receptor 4) stimulation. In cells, cigarette smoke extract exposure was associated with a 4.9% to 9.3% reduction in DNA methylation at F2RL3 and a corresponding 1.7-(95% CI, 1.2-2.4, P=0.04) fold increase in F2RL3 mRNA. Results from reporter assays suggest the exon 2 region of F2RL3 may help control gene expression. CONCLUSIONS: Smoking-induced epigenetic DNA hypomethylation at F2RL3 appears to increase PAR4 expression with potential downstream consequences for platelet reactivity. Combined evidence here not only identifies F2RL3 DNA methylation as a possible contributory pathway from smoking to cardiovascular disease risk but from any feature potentially influencing F2RL3 regulation in a similar manner.


Assuntos
Plaquetas/metabolismo , Epigênese Genética , Infarto do Miocárdio/genética , Receptores de Trombina/genética , Idoso , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/epidemiologia , Receptores de Trombina/metabolismo , Fumar/epidemiologia
16.
Inorg Chem ; 63(1): 27-38, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38118120

RESUMO

ε-Caprolactone (ε-CL) adducts of cationic, amine tris(phenolate)-supported niobium(V) and tantalum(V) ethoxides initiate the ring-opening polymerization of lactones. The Ta(V) species prepared and applied catalytically herein exhibits higher activity in the ring-opening polymerization (ROP) of ε-caprolactone than the previously reported, isostructural Nb(V) complex, contradicting literature comparisons of Nb(V)- and Ta(V)-based protocols. Both systems also initiate the ROP of δ-valerolactone and rac-ß-butyrolactone, kinetic studies confirming retention of higher activity by the Ta congener. Polymerizations of rac-ß-butyrolactone and δ-valerolactone were previously unrealized under Group V- or Ta-mediated conditions, respectively, although the former has afforded only low molecular weight, cyclic poly-3-hydroxybutyrate. Cationic ethoxo-Nb(V) and -Ta(V) δ-valerolactone adducts are also reported, demonstrating the facility of δ-valerolactone as a ligand and the generality of the synthetic method. Both δ-valerolactone-bearing complexes initiate the ROP of ε-caprolactone, δ-valerolactone, and rac-ß-butyrolactone. Accordingly, we have elucidated trends in reactivity and investigated the initiation mechanism for such systems, the insertion event being predicated upon intramolecular nucleophilic attack on the coordinated lactone by the adjacent alkoxide moiety. This mechanism enables quantitative, stoichiometric installation of a single monomer residue distinct from the bulk of the polymer chain, and permits modification of polymer properties via both manipulation of the molecular architecture and tuning of the polymerization kinetics, and thus dispersity, through hitherto inaccessible independent control of the initiation event.

17.
Cereb Cortex ; 33(6): 2470-2484, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35650684

RESUMO

The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.


Assuntos
Ansiolíticos , Ansiedade , Proteínas de Ligação a Ácido Graxo , Córtex Pré-Frontal , Receptor CB2 de Canabinoide , Animais , Ratos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Ansiolíticos/metabolismo , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/metabolismo , Medo/efeitos dos fármacos , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo
18.
BMC Psychiatry ; 24(1): 392, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783231

RESUMO

BACKGROUND: Understanding and treating the harm caused by gambling is a growing international psychiatric and public health challenge. Treatment of gambling harm may involve psychological and pharmacological intervention, in conjunction with peer support. This scoping review was conducted to identify, for the first time, the characteristics and extent of United Kingdom (UK) based gambling treatment research. We reviewed studies conducted among people seeking treatment for disordered or harmful gambling in the UK, the settings, research designs, and outcome measures used, and to identify any treatment research gaps. METHODS: Systematic searches of PsycInfo, PsycArticles, Scopus, PubMed, and Web of Science databases were carried out for gambling treatment research or evaluation studies conducted in the UK. Studies were included if they evaluated the effectiveness of an intervention or treatment designed to improve symptoms of harmful or problematic gambling, reported outcomes of interventions on treatment adherence, gambling symptoms, or behaviours using standardised measures, were conducted in the UK, and were published since 2000. RESULTS: Eight studies met the inclusion criteria. Four were retrospective chart reviews, two were single-participant case reports, one described a retrospective case series, and one employed a cross-sectional design. None used an experimental design. CONCLUSION: The limited number of studies included in this review highlights a relative paucity of gambling treatment research conducted in UK settings. Further work should seek to identify potential barriers and obstacles to conducting gambling treatment research in the UK.


Assuntos
Jogo de Azar , Jogo de Azar/terapia , Jogo de Azar/psicologia , Humanos , Reino Unido
19.
Orthod Craniofac Res ; 27(1): 84-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37452556

RESUMO

OBJECTIVE: Dysregulation of Fibroblast Growth Factor 10 (FGF10), a member of the family of Fibroblast Growth Factor (FGF) proteins, has been implicated in craniofacial and dental anomalies, including craniosynostosis, cleft palate, and Lacrimo-Auriculo-Dento-Digital Syndrome. The aim of this murine study was to assess the craniofacial and dental phenotypes associated with a heterozygous FGF10 gene (FGF10+/- ) mutation at skeletal maturity. METHODS: Skulls of 40 skeletally mature mice, comprising two genotypes (heterozygous FGF10+/- mutation, n = 22; wildtype, n = 18) and two sexes (male, n = 23; female, n = 17), were subjected to micro-computed tomography. Landmark-based linear dimensions were measured for the cranial vault, maxilla, mandible, and first molar teeth. Multivariate analysis of variance was performed to assess whether there were significant differences in the craniofacial and dental structures between genotypes and sexes. RESULTS: The craniomaxillary skeleton and the first molar teeth were smaller in the FGF10+/- mice (P < .05), but the mandible was unaffected. Sex did not have a significant effect on these structures (P > .05). Cranial sutural defects were noted in 5/22 (22.7%) mutant versus 2/18 (11.1%) wildtype mice, and cleft palate in only one (4.5%) mutant mouse. None of the mice displayed craniosynostosis, expansive bony lesions, bifid condyles, or impacted teeth. CONCLUSION: The FGF10+/- mutation was associated with craniomaxillary skeletal hypoplasia that probably arose from deficient (delayed) intramembranous ossification of the sutured bones. Overall, the skeletal and dental data suggest that the FGF10 gene plays an important role in the aetiology of craniofacial dysmorphology and malocclusion.


Assuntos
Fissura Palatina , Anormalidades Craniofaciais , Craniossinostoses , Camundongos , Masculino , Feminino , Animais , Fissura Palatina/genética , Microtomografia por Raio-X , Fator 10 de Crescimento de Fibroblastos/genética , Modelos Animais de Doenças , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/genética , Craniossinostoses/genética , Mutação/genética
20.
Angew Chem Int Ed Engl ; 63(30): e202405344, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38753429

RESUMO

Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.


Assuntos
Aminas , Ciclização , Aminas/química , Peptídeos/química , Gases/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Indicadores e Reagentes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA