Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Pediatr ; 243: 130-134.e2, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34971655

RESUMO

OBJECTIVES: To develop and validate a prediction model for fat mass in infants ≤12 kg using easily accessible measurements such as weight and length. STUDY DESIGN: We used data from a pooled cohort of 359 infants age 1-24 months and weighing 3-12 kg from 3 studies across Southern California and New York City. The training data set (75% of the cohort) included 269 infants and the testing data set (25% of the cohort) included 90 infants age 1-24 months. Quantitative magnetic resonance was used as the standard measure for fat mass. We used multivariable linear regression analysis, with backwards selection of predictor variables and fractional polynomials for nonlinear relationships to predict infant fat mass (from which lean mass can be estimated by subtracting resulting estimates from total mass) in the training data set. We used 5-fold cross-validation to examine overfitting and generalizability of the model's predictive performance. Finally, we tested the adjusted model on the testing data set. RESULTS: The final model included weight, length, sex, and age, and had high predictive ability for fat mass with good calibration of observed and predicted values in the training data set (optimism-adjusted R2: 92.1%). Performance on the test dataset showed promising generalizability (adjusted R2: 85.4%). The mean difference between observed and predicted values in the testing dataset was 0.015 kg (-0.043 to -0.072 kg; 0.7% of the mean). CONCLUSIONS: Our model accurately predicted infant fat mass and could be used to improve the accuracy of assessments of infant body composition for effective early identification, surveillance, prevention, and management of obesity and future chronic disease risk.


Assuntos
Tecido Adiposo , Composição Corporal , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Calibragem , Pré-Escolar , Humanos , Lactente , Modelos Lineares , Obesidade
2.
J Nutr ; 152(7): 1655-1665, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218194

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) among Latinos is partially attributed to a prevalent C>G polymorphism in the patatin-like phospholipase 3 (PNPLA3) gene. Cross-sectional analyses in Latino children showed the association between dietary sugar and liver fat was exacerbated by GG genotype. Pediatric feeding studies show extreme sugar restriction improves liver fat, but no prior trial has examined the impact of a clinical intervention or whether effects differ by PNPLA3 genotype. OBJECTIVES: We aimed to test effects of a clinical intervention to reduce dietary sugar compared with standard dietary advice on change in liver fat, and secondary-endpoint changes in liver fibrosis, liver enzymes, and anthropometrics; and whether effects differ by PNPLA3 genotype (assessed retrospectively) in Latino youth with obesity (BMI ≥ 95th percentile). METHODS: This parallel-design trial randomly assigned participants (n = 105; mean baseline liver fat: 12.7%; mean age: 14.8 y) to control or sugar reduction (goal of ≤10% of calories from free sugar) for 12 wk. Intervention participants met with a dietitian monthly and received delivery of bottled water. Changes in liver fat, by MRI, were assessed by intervention group via general linear models. RESULTS: Mean free sugar intake decreased in intervention compared with control [11.5% to 7.3% compared with 13.9% to 10.7% (% energy), respectively; P = 0.02], but there were no significant effects on liver outcomes or anthropometrics (Pall > 0.10), and no PNPLA3 interactions (Pall > 0.10). In exploratory analyses, participants with whole-body fat mass (FM) reduction (mean ± SD: -1.9 ± 2.4 kg), irrespective of randomization, had significant reductions in liver fat compared with participants without FM reduction (median: -2.1%; IQR: -6.5% to -0.8% compared with 0.3%; IQR: -1.0% to 1.1%; P < 0.001). CONCLUSIONS: In Latino youth with obesity, a dietitian-led sugar reduction intervention did not improve liver outcomes compared with control, regardless of PNPLA3 genotype. Results suggest FM reduction is important for liver fat reduction, confirming clinical recommendations of weight loss and a healthy diet for pediatric NAFLD.This trial was registered at clinicaltrials.gov as NCT02948647.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adolescente , Criança , Estudos Transversais , Açúcares da Dieta , Predisposição Genética para Doença , Genótipo , Hispânico ou Latino , Humanos , Lipase/genética , Fígado , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade , Fosfolipases/genética , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos
3.
J Nutr ; 151(4): 876-882, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693851

RESUMO

BACKGROUND: Human milk oligosaccharides (HMOs) are complex glycans that are highly abundant in human milk. While over 150 HMOs have been identified, it is unknown how individual HMOs change in concentration over 24 months of lactation. OBJECTIVES: To understand how HMO concentrations change over 24 months of lactation. METHODS: Breast milk samples were collected from participants in a longitudinal cohort study of Hispanic mother-infant pairs at 1, 6, 12, 18, and 24 months postpartum. Concentrations of 19 of the most abundant HMOs were measured using HPLC. Because the parent study is ongoing and not all participants have finished all time points yet, the sample sizes ranged per time point (n = 207 at 1 month; n = 109 at 6 months; n = 83 at 12 months; n = 59 at 18 months; and n = 28 at 24 months). Approximately 88% of participants were classified as HMO secretors-a genetic factor that affects concentrations of HMOs such as 2'fucosyllactose (2'FL) and lacto-N-fucopentaose I-while the remaining 12% were classified as nonsecretors. Mixed models were used to examine changes in HMO concentrations and relative abundances over the course of lactation. RESULTS: The majority of HMOs significantly decreased in concentration over the course of lactation. The exceptions were 2'FL, sialyl-lacto-N-tetraose b, and disialyl-lacto-N-tetraose, which did not change with time, and 3-fucosyllactose (3FL) and 3'-sialyllactose (3'SL), which significantly increased. The concentration of 3FL increased 10-fold, from 195 (IQR 138-415) µg/mL at 1 month to 1930 (1100-2630) µg/mL at 24 months, while 3'SL increased 2-fold, from 277 (198-377) µg/mL to 568 (448-708) µg/mL over the same time period. CONCLUSIONS: These results indicate that HMOs do not decrease in concentration uniformly across lactation. In particular, 3FL and 3'SL increased over the course of lactation in this cohort. Future studies are required to fully understand the functions of these HMOs.


Assuntos
Leite Humano/química , Oligossacarídeos/análise , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Feminino , Hispânico ou Latino , Humanos , Lactente , Recém-Nascido , Lactação/metabolismo , Estudos Longitudinais , Masculino , Leite Humano/metabolismo , Modelos Biológicos , Oligossacarídeos/metabolismo , Trissacarídeos/análise , Trissacarídeos/metabolismo
4.
Environ Health ; 20(1): 67, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090448

RESUMO

BACKGROUND: Prior epidemiological and animal work has linked in utero exposure to ambient air pollutants (AAP) with accelerated postnatal weight gain, which is predictive of increased cardiometabolic risk factors in childhood and adolescence. However, few studies have assessed changes in infant body composition or multiple pollutant exposures. Therefore, the objective of this study was to examine relationships between prenatal residential AAP exposure with infant growth and adiposity. METHODS: Residential exposure to AAP (particulate matter < 2.5 and 10 microns in aerodynamic diameter [PM2.5, PM10]; nitrogen dioxide [NO2]; ozone [O3]; oxidative capacity [Oxwt: redox-weighted oxidative potential of O3 and NO2]) was modeled by spatial interpolation of monitoring stations via an inverse distance-squared weighting (IDW2) algorithm for 123 participants from the longitudinal Mother's Milk Study, an ongoing cohort of Hispanic mother-infant dyads from Southern California. Outcomes included changes in infant growth (weight, length), total subcutaneous fat (TSF; calculated via infant skinfold thickness measures) and fat distribution (umbilical circumference, central to total subcutaneous fat [CTSF]) and were calculated by subtracting 1-month measures from 6-month measures. Multivariable linear regression was performed to examine relationships between prenatal AAP exposure and infant outcomes. Models adjusted for maternal age, pre-pregnancy body mass index, socioeconomic status, infant age, sex, and breastfeeding frequency. Sex interactions were tested, and effects are reported for each standard deviation increase in exposure. RESULTS: NO2 was associated with greater infant weight gain (ß = 0.14, p = 0.02) and TSF (ß = 1.69, p = 0.02). PM10 and PM2.5 were associated with change in umbilical circumference (ß = 0.73, p = 0.003) and TSF (ß = 1.53, p = 0.04), respectively. Associations of Oxwt (pinteractions < 0.10) with infant length change, umbilical circumference, and CTSF were modified by infant sex. Oxwt was associated with attenuated infant length change among males (ß = -0.60, p = 0.01), but not females (ß = 0.16, p = 0.49); umbilical circumference among females (ß = 0.92, p = 0.009), but not males (ß = -0.00, p = 0.99); and CTSF among males (ß = 0.01, p = 0.03), but not females (ß = 0.00, p = 0.51). CONCLUSION: Prenatal AAP exposure was associated with increased weight gain and anthropometric measures from 1-to-6 months of life among Hispanic infants. Sex-specific associations suggest differential consequences of in utero oxidative stress. These results indicate that prenatal AAP exposure may alter infant growth, which has potential to increase childhood obesity risk.


Assuntos
Adiposidade , Poluentes Atmosféricos/efeitos adversos , Desenvolvimento Infantil , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Adulto , Poluentes Atmosféricos/análise , California , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Gravidez , Adulto Jovem
5.
Environ Res ; 161: 472-478, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29220800

RESUMO

BACKGROUND: Traffic-related air pollution (TRAP) exposure has been linked to type 2 diabetes and metabolic dysfunction in humans. Animal studies suggest that air pollutants may alter the composition of the gut microbiota, which may negatively impact metabolic health through changes in the composition and/or function of the gut microbiome. OBJECTIVES: The primary aim of this study was to determine whether elevated TRAP exposure was correlated with gut bacterial taxa in overweight and obese adolescents from the Meta-AIR (Metabolic and Asthma Incidence Research) study. The secondary aim was to examine whether gut microbial taxa correlated with TRAP were also correlated with risk factors for type 2 diabetes (e.g., fasting glucose levels). We additionally explored whether correlations between TRAP and these metabolic risk factors could be explained by the relative abundance of these taxa. METHODS: Participants (17-19 years; n=43) were enrolled between 2014 and 2016 from Southern California. The CALINE4 line dispersion model was used to model prior year residential concentrations of nitrogen oxides (NOx) as a marker of traffic emissions. The relative abundance of fecal microbiota was characterized by 16S rRNA sequencing and spearman partial correlations were examined after adjusting for body fat percent. RESULTS: Freeway TRAP was correlated with decreased Bacteroidaceae (r=-0.48; p=0.001) and increased Coriobacteriaceae (r=0.48; p<0.001). These same taxa were correlated with fasting glucose levels, including Bacteroidaceae (r=-0.34; p=0.04) and Coriobacteriaceae (r=0.41; p<0.01). Further, freeway TRAP was positively correlated fasting glucose (r=0.45; p=0.004) and Bacteroidaceae and Coriobacteriaceae explained 24% and 29% of the correlation between TRAP and fasting glucose levels. CONCLUSIONS: Increased TRAP exposure was correlated with gut microbial taxa and fasting glucose levels. Gut microbial taxa that were correlated with TRAP partially explained the correlation between TRAP and fasting glucose levels. These results suggest that exposure to air pollutants may negatively impact metabolic health via alterations in the gut microbiota.


Assuntos
Poluição do Ar , Microbioma Gastrointestinal , Obesidade , Sobrepeso , Emissões de Veículos , Adolescente , Poluição do Ar/efeitos adversos , California , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Masculino , RNA Ribossômico 16S , Risco
6.
J Nutr ; 147(1): 20-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903830

RESUMO

BACKGROUND: The gut microbiome has been implicated in various metabolic and neurocognitive disorders and is heavily influenced by dietary factors, but there is a paucity of research on the effects of added sugars on the gut microbiome. OBJECTIVE: With the use of a rodent model, our goal was to determine how added-sugar consumption during the juvenile and adolescent phase of development affects the gut microbiome. METHODS: Forty-two juvenile male Sprague-Dawley rats [postnatal day (PND) 26; 50-70 g] were given access to 1 of 3 different 11%-carbohydrate solutions designed to model a range of monosaccharide ratios commonly consumed in sugar-sweetened beverages: 1) 35% fructose:65% glucose, 2) 50% fructose:50% glucose, 3) 65% fructose:35% glucose, and 4) control (no sugar). After ad libitum access to the respective solutions for the juvenile and adolescent period (PND 26-80), fecal samples were collected for next-generation 16S ribosomal RNA sequencing and multivariate microbial composition analyses. Energy intake, weight change, and adiposity index were analyzed in relation to sugar consumption and the microbiota. RESULTS: Body weight, adiposity index, and total caloric intake did not differ as a result of sugar consumption. However, sugar consumption altered the gut microbiome independently of anthropometric measures and caloric intake. At the genus level, Prevotella [linear discriminant analysis (LDA) score = -4.62; P < 0.001] and Lachnospiraceae incertae sedis (LDA score = -3.01; P = 0.03) were reduced, whereas Bacteroides (LDA score = 4.19; P < 0.001), Alistipes (LDA score = 3.88; P < 0.001), Lactobacillus (LDA score = 3.78; P < 0.001), Clostridium sensu stricto (LDA score = 3.77; P < 0.001), Bifidobacteriaceae (LDA score = 3.59; P = 0.001), and Parasutterella (LDA score = 3.79; P = 0.004) were elevated by sugar consumption. No overall pattern could be attributable to monosaccharide ratio. CONCLUSIONS: Early-life sugar consumption affects the gut microbiome in rats independently of caloric intake, body weight, or adiposity index; these effects are robust across a range of fructose-to-glucose ratios.


Assuntos
Frutose/administração & dosagem , Glucose/administração & dosagem , Microbiota/efeitos dos fármacos , Obesidade/microbiologia , Animais , Fezes/microbiologia , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Animals (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338095

RESUMO

Pruritic dermatitis (PD) is a common presentation of canine allergic skin diseases, with diversity in severity and treatment response due to complex etiopathogenesis. Evidence suggests the gut microbiota (GM) may contribute to the development of canine allergies. A 10-week double-blind randomized controlled trial evaluated a novel probiotic and nutraceutical blend (PNB) on clinical signs of skin allergy, health measures, and the GM of privately owned self-reported pruritic dogs. A total of 105 dogs were enrolled, with 62 included in pruritus and health analysis and 50 in microbiome analysis. The PNB supported greater improvement of owner-assessed clinical signs of PD at week 2 than the placebo (PBO). More dogs that received the PNB shifted to normal pruritus (digital PVAS10-N: <2) by week 4, compared to week 7 for the PBO. While a placebo effect was identified, clinical differences were supported by changes in the GM. The PNB enriched three probiotic bacteria and reduced abundances of species associated with negative effects. The PBO group demonstrated increased abundances of pathogenic species and reduced abundances of several beneficial species. This trial supports the potential of the PNB as a supplemental intervention in the treatment of PD; however, further investigation is warranted, with stricter diagnostic criteria, disease biomarkers and direct veterinary examination.

8.
Nutrients ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931150

RESUMO

Growing evidence indicates that human milk oligosaccharides (HMOs) are important bioactive compounds that enhance health and developmental outcomes in breastfed babies. Maternal dietary intake likely contributes to variation in HMO composition, but studies identifying diet-HMO relationships are few and inconsistent. This study aimed to investigate how the maternal intake of macronutrients and micronutrients-specifically proteins, fats, vitamins, and minerals-associated with HMOs at 1 month (n = 210), 6 months (n = 131), and 12 months postpartum (n = 84). Several associations between maternal dietary factors and HMO profiles were identified utilizing partial correlation analysis. For example, maternal free sugar (rho = -0.02, p < 0.01), added sugar (rho = -0.22, p < 0.01), and sugary sweetened beverage (rho = -0.22, p < 0.01) intake were negatively correlated with the most abundant HMO, 2'-fucosyllactose (2'-FL), at 1 month, suggesting that higher sugar consumption was associated with reduced levels of 2'-FL. Further, vitamins D, C, K, and the minerals zinc and potassium were positively correlated with 2'-FL at 1 month (pAll < 0.05). For the longitudinal analysis, a mixed-effects linear regression model revealed significant associations between maternal vitamin intake and HMO profiles over time. For example, for each unit increase in niacin intake, there was a 31.355 nmol/mL increase in 2'-FL concentration (p = 0.03). Overall, the results provide additional evidence supporting a role for maternal nutrition in shaping HMO profiles, which may inform future intervention strategies with the potential of improving infant growth and development through optimal HMO levels in mothers' milk.


Assuntos
Dieta , Hispânico ou Latino , Fenômenos Fisiológicos da Nutrição Materna , Leite Humano , Oligossacarídeos , Humanos , Leite Humano/química , Feminino , Oligossacarídeos/análise , Adulto , Adulto Jovem , Lactente , Aleitamento Materno , Trissacarídeos/análise , Vitaminas/análise , Vitaminas/administração & dosagem , Estudos Longitudinais , Mães
9.
Nutrients ; 14(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268090

RESUMO

Few studies have investigated the influence of infant formulas made with added corn-syrup solids on the development of child eating behaviors. We examined associations of breastmilk (BM), traditional formula (TF), and formula containing corn-syrup solids (CSSF) with changes in eating behaviors over a period of 2 years. Feeding type was assessed at 6 months in 115 mother−infant pairs. Eating behaviors were assessed at 12, 18 and 24 months. Repeated Measures ANCOVA was used to determine changes in eating behaviors over time as a function of feeding type. Food fussiness and enjoyment of food differed between the feeding groups (p < 0.05) and changed over time for CSSF and TF (p < 0.01). Food fussiness increased from 12 to 18 and 12 to 24 months for CSSF and from 12 to 24 months for TF (p < 0.01), while it remained stable for BM. Enjoyment of food decreased from 12 to 24 months for CSSF (p < 0.01), while it remained stable for TF and BM. There was an interaction between feeding type and time for food fussiness and enjoyment of food (p < 0.01). Our findings suggest that Hispanic infants consuming CSSF may develop greater food fussiness and reduced enjoyment of food in the first 2 years of life compared to BM-fed infants.


Assuntos
Fórmulas Infantis , Zea mays , Criança , Comportamento Alimentar , Feminino , Hispânico ou Latino , Humanos , Lactente , Inquéritos e Questionários
10.
Anim Microbiome ; 3(1): 36, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971985

RESUMO

BACKGROUND: Probiotics have been demonstrated to ameliorate clinical signs of gastrointestinal diseases in dogs in various studies. However, the effect of probiotics in a healthy population, as well as factors contributing individualized responses, remain largely unknown. This trial examined gut microbiota (GM) and health outcomes in household dogs after synbiotic (SN) supplementation containing probiotics and inulin (a prebiotic). Healthy dogs were randomized to receive SN (50 mg/d inulin and 20 billion total CFU/d of L. reuteri, P. acidilactici, E. faecium, L. acidophilus, B. animalis, L. fermentum, L. rhamnosus) or placebo (PL) for 4 weeks. Owners completed a health survey and collected stool samples for GM profiling (shotgun metagenomic sequencing) at baseline and week 4 in both groups, and at week 6 in the SN group. RESULTS: A significant shift (p < 0.001) in ß-diversity was observed in the SN (n = 24), but not PL group (n = 19), at week 4 relative to baseline. Forty-five bacterial species, 43 (96%) of which were Lactobacillales, showed an increase in the relative abundances (≥2 fold change, adjusted p < 0.05) in the SN group at week 4. E. coli also decreased at week 4 in the SN group (2.8-fold, adjusted p < 0.01). The altered taxa largely returned to baseline at week 6. The degree of changes in ß-diversity was associated with GM at baseline. Specifically, dogs with higher Proteobacteria and lower Lactobacillales responded more robustly to supplementation in terms of the change in ß-diversity. Dogs fed SN tended to have lower diarrhea incidence (0% vs 16%, p = 0.08). CONCLUSIONS: SN supplement had a short-term impact on the gut microbiota in healthy household dogs as characterized by shotgun metagenomic sequencing. Findings warrant further investigation with longer duration and populations at risk of gastrointestinal diseases. The magnitude of response to the supplement was associated with microbial profile at baseline. To our knowledge, this is the first study documenting such association and may provide a basis for personalized nutrition in companion dogs.

11.
Pediatr Obes ; 16(7): e12764, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33370849

RESUMO

BACKGROUND: Little is known about the normal eating time periods in adolescents with obesity and how these patterns change throughout development. As the obesity epidemic continues to rise in adolescence, it becomes imperative to understand developmentally appropriate eating behaviours and to create weight management strategies that build on those innate patterns and preferences. The purpose of this study was to determine the most common habitual eating windows observed in adolescents with obesity. METHODS: Participants were 101 Hispanic adolescents (mean age 14.8 ± 2.1 years; 48 male/53 female) with obesity (BMI ≥95th percentile) who were recruited as part of a larger clinical trial. Dietary intake and meal timing was determined using multiple pass 24-hours recalls. Histograms were utilized to determine the natural distribution of percent consumption of total kilocalories, carbohydrates and added sugar per hour. RESULTS: The majority of total kilocalories (65.4%), carbohydrates (65.3%) and added sugar (59.1%) occurred between 11:00 and 19:00. Adolescents were 2.5 to 2.9 times more likely to consume kilocalories, carbohydrates, and added sugar during the 8-hour window between 11:00 am and 19:00 pm than other time windows examined (all P < .001). The consumption of these calories did not differ between weekdays and weekend (P > .05) or by sex. CONCLUSIONS: In this cohort, more than 60% of calories, carbohydrates and added sugar were consumed between 11:00 am and 19:00 pm, which is concordant with an afternoon/evening chronotype that is common in adolescents. Our findings support this 8-hour period as a practical window for weight loss interventions that target pre-specified eating periods in this population.


Assuntos
Obesidade Infantil , Adolescente , Criança , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Feminino , Hispânico ou Latino , Humanos , Masculino , Obesidade Infantil/epidemiologia , Obesidade Infantil/prevenção & controle
12.
Transl Psychiatry ; 11(1): 194, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790226

RESUMO

Emerging evidence highlights a critical relationship between gut microbiota and neurocognitive development. Excessive consumption of sugar and other unhealthy dietary factors during early life developmental periods yields changes in the gut microbiome as well as neurocognitive impairments. However, it is unclear whether these two outcomes are functionally connected. Here we explore whether excessive early life consumption of added sugars negatively impacts memory function via the gut microbiome. Rats were given free access to a sugar-sweetened beverage (SSB) during the adolescent stage of development. Memory function and anxiety-like behavior were assessed during adulthood and gut bacterial and brain transcriptome analyses were conducted. Taxa-specific microbial enrichment experiments examined the functional relationship between sugar-induced microbiome changes and neurocognitive and brain transcriptome outcomes. Chronic early life sugar consumption impaired adult hippocampal-dependent memory function without affecting body weight or anxiety-like behavior. Adolescent SSB consumption during adolescence also altered the gut microbiome, including elevated abundance of two species in the genus Parabacteroides (P. distasonis and P. johnsonii) that were negatively correlated with hippocampal function. Transferred enrichment of these specific bacterial taxa in adolescent rats impaired hippocampal-dependent memory during adulthood. Hippocampus transcriptome analyses revealed that early life sugar consumption altered gene expression in intracellular kinase and synaptic neurotransmitter signaling pathways, whereas Parabacteroides microbial enrichment altered gene expression in pathways associated with metabolic function, neurodegenerative disease, and dopaminergic signaling. Collectively these results identify a role for microbiota "dysbiosis" in mediating the detrimental effects of early life unhealthy dietary factors on hippocampal-dependent memory function.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Açúcares da Dieta/efeitos adversos , Memória , Ratos , Ratos Sprague-Dawley
13.
Food Sci Nutr ; 9(4): 1842-1850, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841803

RESUMO

There is a high prevalence of obesity and type 2 diabetes in the United States, particularly among Hispanic women, which may be partly explained by failure to lose gestational weight during the postpartum period. Previous work indicates that protein and amino acids may protect against weight gain; therefore, this study examined the impact of dietary protein and amino acid intake on changes in postpartum weight and the percent of women meeting the Estimated Average Requirement (EAR) for these dietary variables among Hispanic women from the Southern California Mother's Milk Study (n = 99). Multivariable linear regression analysis was used to examine the associations between protein and amino acid intake with change in weight after adjusting for maternal age, height, and energy intake. Women's weight increased from prepregnancy to 1-month and 6-months postpartum (71.1 ± 14.6 vs. 73.1 ± 13.1 vs. 74.5 ± 14.6 kg, p < .0001). Although dietary protein was not associated with weight change (ß = -1.09; p = .13), phenylalanine (ß = -1.46; p = .04), tryptophan (ß = -1.71; p = .009), valine (ß = -1.34; p = .04), isoleucine (ß = -1.26; p = .045), and cysteine (ß = -1.52; p = .02) intake were inversely associated with weight change. Additionally, fewer women met the EAR values for cysteine (11.1%), phenylalanine (60.6%), and methionine (69.7%), whereas most women met the EAR values for tryptophan (92.9%), valine (96.0%), and isoleucine (94.9%). Study results indicate that several essential and conditionally essential amino acids were associated with postpartum weight loss, with a significant portion of women not meeting recommended intake levels for some of these amino acids. These results highlight the importance of postpartum maternal diet as a potential modifiable risk factor.

14.
Nutrients ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579129

RESUMO

Micronutrients are dietary components important for health and physiological function, and inadequate intake of these nutrients can contribute to poor health outcomes. The risk of inadequate micronutrient intake has been shown to be greater among low-income Hispanics and postpartum and lactating women. Therefore, we aimed to determine the risk of nutrient inadequacies based on preliminary evidence among postpartum, Hispanic women. Risk of micronutrient inadequacy for Hispanic women (29-45 years of age) from the Southern California Mother's Milk Study (n = 188) was assessed using 24 h dietary recalls at 1 and 6 months postpartum and the estimated average requirement (EAR) fixed cut-point approach. Women were considered at risk of inadequate intake for a nutrient if more than 50% of women were consuming below the EAR. The Chronic Disease Risk Reduction (CDRR) value was also used to assess sodium intake. These women were at risk of inadequate intake for folate and vitamins A, D, and E, with 87.0%, 93.4%, 43.8%, and 95% of women consuming less than the EAR for these nutrients, respectively. Lastly, 71.7% of women consumed excess sodium. Results from this preliminary analysis indicate that Hispanic women are at risk of inadequate intake of important micronutrients for maternal and child health.


Assuntos
Dieta , Hispânico ou Latino/estatística & dados numéricos , Lactação/fisiologia , Micronutrientes/deficiência , Mães/estatística & dados numéricos , Adulto , California/epidemiologia , Estudos de Coortes , Ingestão de Alimentos , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Leite Humano , Período Pós-Parto/fisiologia , Sódio na Dieta/administração & dosagem
15.
Gut Microbes ; 13(1): 1961203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424832

RESUMO

We aimed to determine if the newborn gut microbiota is an underlying determinant of early life growth trajectories. 132 Hispanic infants were recruited at 1-month postpartum. The infant gut microbiome was characterized using 16S rRNA amplicon sequencing. Rapid infant growth was defined as a weight-for-age z-score (WAZ) change greater than 0.67 between birth and 12-months of age. Measures of infant growth included change in WAZ, weight-for-length z-score (WLZ), and body mass index (BMI) z-scores from birth to 12-months and infant anthropometrics at 12-months (weight, skinfold thickness). Of the 132 infants, 40% had rapid growth in the first year of life. Multiple metrics of alpha-diversity predicted rapid infant growth, including a higher Shannon diversity (OR = 1.83; 95% CI: 1.07-3.29; p = .03), Faith's phylogenic diversity (OR = 1.41, 95% CI: 1.05-1.94; p = .03), and richness (OR = 1.04, 95% CI: 1.01-1.08; p = .02). Many of these alpha-diversity metrics were also positively associated with increases in WAZ, WLZ, and BMI z-scores from birth to 12-months (pall<0.05). Importantly, we identified subsets of microbial consortia whose abundance were correlated with these same measures of infant growth. We also found that rapid growers were enriched in multiple taxa belonging to genera such as Acinetobacter, Collinsella, Enterococcus, Neisseria, and Parabacteroides. Moreover, measures of the newborn gut microbiota explained up to an additional 5% of the variance in rapid growth beyond known clinical predictors (R2 = 0.37 vs. 0.32, p < .01). These findings indicate that a more mature gut microbiota, characterized by increased alpha-diversity, at as early as 1-month of age, may influence infant growth trajectories in the first year of life.


Assuntos
Bactérias/classificação , Desenvolvimento Infantil/fisiologia , Microbioma Gastrointestinal/fisiologia , Bactérias/isolamento & purificação , Biodiversidade , Índice de Massa Corporal , Peso Corporal , California/epidemiologia , Feminino , Hispânico ou Latino , Humanos , Lactente , Recém-Nascido , Mães/estatística & dados numéricos , Obesidade/epidemiologia , RNA Ribossômico 16S/genética
16.
Nutrients ; 13(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065978

RESUMO

Non-alcoholic fatty liver disease impacts 15.2% of Hispanic adolescents and can progress to a build-up of scared tissue called liver fibrosis. If diagnosed early, liver fibrosis may be reversible, so it is necessary to understand risk factors. The aims of this study in 59 Hispanic adolescents with obesity were to: (1) identify potential biological predictors of liver fibrosis and dietary components that influence liver fibrosis, and (2) determine if the association between dietary components and liver fibrosis differs by PNPLA3 genotype, which is highly prevalent in Hispanic adolescents and associated with elevated liver fat. We examined liver fat and fibrosis, genotyped for PNPLA3 gene, and assessed diet via 24-h diet recalls. The prevalence of increased fibrosis was 20.9% greater in males, whereas participants with the GG genotype showed 23.7% greater prevalence. Arachidonic acid was associated with liver fibrosis after accounting for sex, genotype, and liver fat (ß = 0.072, p = 0.033). Intakes of several dietary types of unsaturated fat have different associations with liver fibrosis by PNPLA3 genotype after accounting for sex, caloric intake, and liver fat. These included monounsaturated fat (ßCC/CG = -0.0007, ßGG = 0.03, p-value = 0.004), polyunsaturated fat (ßCC/CG = -0.01, ßGG = 0.02, p-value = 0.01), and omega-6 (ßCC/CG = -0.0102, ßGG = 0.028, p-value = 0.01). Results from this study suggest that reduction of arachidonic acid and polyunsaturated fatty acid intake might be important for the prevention of non-alcoholic fatty liver disease progression, especially among those with PNPLA3 risk alleles.


Assuntos
Ácido Araquidônico/efeitos adversos , Gorduras Insaturadas na Dieta/efeitos adversos , Hispânico ou Latino/genética , Lipase/genética , Cirrose Hepática/etiologia , Proteínas de Membrana/genética , Obesidade Infantil/genética , Adiposidade , Adolescente , Criança , Feminino , Genótipo , Hispânico ou Latino/estatística & dados numéricos , Humanos , Cirrose Hepática/genética , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia
17.
Microbiome ; 8(1): 46, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241293

RESUMO

BACKGROUND: Despite recent decreases in the cost of sequencing, shotgun metagenome sequencing remains more expensive compared with 16S rRNA amplicon sequencing. Methods have been developed to predict the functional profiles of microbial communities based on their taxonomic composition. In this study, we evaluated the performance of three commonly used metagenome prediction tools (PICRUSt, PICRUSt2, and Tax4Fun) by comparing the significance of the differential abundance of predicted functional gene profiles to those from shotgun metagenome sequencing across different environments. RESULTS: We selected 7 datasets of human, non-human animal, and environmental (soil) samples that have publicly available 16S rRNA and shotgun metagenome sequences. As we would expect based on previous literature, strong Spearman correlations were observed between predicted gene compositions and gene relative abundance measured with shotgun metagenome sequencing. However, these strong correlations were preserved even when the abundance of genes were permuted across samples. This suggests that simple correlation coefficient is a highly unreliable measure for the performance of metagenome prediction tools. As an alternative, we compared the performance of genes predicted with PICRUSt, PICRUSt2, and Tax4Fun to sequenced metagenome genes in inference models associated with metadata within each dataset. With this approach, we found reasonable performance for human datasets, with the metagenome prediction tools performing better for inference on genes related to "housekeeping" functions. However, their performance degraded sharply outside of human datasets when used for inference. CONCLUSION: We conclude that the utility of PICRUSt, PICRUSt2, and Tax4Fun for inference with the default database is likely limited outside of human samples and that development of tools for gene prediction specific to different non-human and environmental samples is warranted. Video abstract.


Assuntos
Biologia Computacional/métodos , Metagenômica/métodos , Microbiota , Software , Microbiologia do Solo , Animais , Galinhas , Bases de Dados Factuais , Gorilla gorilla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Camundongos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
18.
Am J Clin Nutr ; 112(6): 1516-1522, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33020800

RESUMO

BACKGROUND: Our prior studies revealed that infant somatic growth is influenced by fructose in breast milk, and fructose in breast milk is increased in response to maternal sugar-sweetened beverage (SSB) intake in lactation. It is unknown whether infant neurodevelopmental outcomes are also influenced by maternal SSBs in lactation. OBJECTIVES: To determine whether infant cognitive development at 24 postnatal months was influenced by maternal fructose consumption during lactation, and whether this relation persisted after accounting for maternal SSB and juice (SSB + J) intake. METHODS: Hispanic mother-infant pairs (n = 88) were recruited across the spectrum of prepregnancy BMI. Mothers completed two 24-h dietary recalls at 1 and 6 postnatal months, and reported breastfeedings per day. The Bayley-III Scales of Infant Development were administered at 24 postnatal months to assess infant cognition. Linear regressions were used to examine associations, reported as unstandardized (B) coefficients, 95% CIs, and P values. RESULTS: Mothers consumed 1656 ± 470 kcal, 21.8 ± 12 g fructose, and 2.5 ± 2.6 servings SSBs + J, and reported 6.9 ± 2.1 breastfeedings per day at 1 postnatal month. Controlling for maternal age, prepregnancy BMI, education level, kilocalories, infant age, sex, and birthweight revealed that infant cognitive development scores at 24 postnatal months correlated inversely with maternal fructose consumption at 1 postnatal month (B = -0.08; 95% CI = -0.13, -0.03; P < 0.01). The association of infant cognitive development scores with maternal fructose consumption was no longer significant after adjustment for maternal SSB + J intake (B = -0.05; 95% CI = -0.10, 0.00; P = 0.07), whereas maternal SSB + J intake was significant in the same model (B = -0.29; 95% CI = -0.52, -0.05; P = 0.02). Infant cognitive development scores were not associated with maternal fructose and SSB + J consumption at 6 postnatal months. CONCLUSIONS: Our findings suggest that infant neurodevelopmental outcomes at 24 postnatal months can be adversely influenced by maternal fructose intake in early lactation, and this could be attributed to maternal SSB + J intake.


Assuntos
Frutose/administração & dosagem , Sucos de Frutas e Vegetais , Lactação/fisiologia , Bebidas Adoçadas com Açúcar , Adulto , Aleitamento Materno , Desenvolvimento Infantil , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem
19.
Obesity (Silver Spring) ; 28(8): 1519-1525, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32935530

RESUMO

OBJECTIVE: The aim of this study was to determine whether human milk oligosaccharides (HMOs) at 1 month predicted infant weight gain at 6 months and whether associations varied by HMO secretor status. METHODS: Participants were 157 Hispanic mother-infant pairs. Human milk samples were collected at 1 month. Nineteen individual HMOs were analyzed using high-performance liquid chromatography, and secretor status was determined by the presence of 2'-fucosyllactose or lacto-N-fucopentaose (LNFP) I. Infant weight was measured at 1 and 6 months. Path analysis was used to test effects of HMO composition on infant weight gain, adjusting for maternal age, prepregnancy BMI, and infant age, sex, and birth weight. RESULTS: In the total sample, higher LNFPII predicted lower infant weight gain (g1 = -4.1, P = 0.004); this was observed in both nonsecretor (g1 = -3.0, P = 0.006) and secretor groups (g1 = -4.7, P = 0.014). In the nonsecretor group, higher lacto-N-neotetraose (g1 = 7.6, P = 0.011) and disialyllacto-N-tetraose (g1 = 14.3, P = 0.002) predicted higher infant weight gain. There were no other associations in the secretor group. CONCLUSIONS: Our data suggest that higher LNFPII in human milk may decrease obesity risk across all infants, whereas higher lacto-N-neotetraose and disialyllacto-N-tetraose may increase obesity risk in infants of nonsecretors only.


Assuntos
Leite Humano/química , Oligossacarídeos/química , Adulto , Feminino , Hispânico ou Latino , Humanos , Lactente , Recém-Nascido , Masculino , Fatores de Tempo , Aumento de Peso
20.
Am J Clin Nutr ; 112(3): 519-526, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597935

RESUMO

BACKGROUND: Obesity prevalence remains high in the United States, and there is an increased risk among women who do not lose their gestational weight gain during the postpartum period. Indicators of dietary carbohydrate quality including added sugar consumption, glycemic load, and glycemic index have been linked with weight gain, whereas fiber may protect against obesity. However, these dietary factors have not been examined during the postpartum period. OBJECTIVES: The aim of this study was to determine whether dietary sugars and fiber intake were associated with changes in postpartum weight. METHODS: We examined Hispanic women from the longitudinal Southern California Mother's Milk Study (n = 99) at 1 and 6 mo postpartum. Maternal assessments included height, weight, and dietary intake based on 24-h diet recalls. We used multivariable linear regression to examine the relation between maternal diet and change in postpartum weight after adjusting for maternal age, height, and energy intake. RESULTS: Higher intake of added sugar was associated with postpartum weight gain (ß: 0.05; 95% CI: 0.004, 0.10; P = 0.05). In addition, a half 8-ounce (8 fluid ounces = 236.6 mL) serving per day increase in soft drinks was associated with a 1.52-kg increase in weight (95% CI: 0.70, 2.34 kg; P < 0.001). A high glycemic index (ß: 0.25; 95% CI: 0.07, 0.42; P = 0.006) and glycemic load (ß: 0.04; 95% CI: 0.002, 0.08; P = 0.04) were associated with postpartum weight gain. Higher soluble fiber was associated with a decrease in postpartum weight (ß: -0.82 kg; 95% CI: -1.35, -0.29 kg; P = 0.003) and the negative effects of added sugar, sugary beverages, and high-glycemic-index and -load diets were partially attenuated after adjusting for soluble fiber intake. CONCLUSIONS: Increased consumption of added sugar, sugar-sweetened beverages, and high-glycemic diets were associated with greater weight gain in the first 6 mo postpartum. In addition, increased consumption of soluble fiber was associated with postpartum weight loss, which may partially offset the obesogenic effects of some dietary sugars.


Assuntos
Peso Corporal/efeitos dos fármacos , Fibras na Dieta/administração & dosagem , Açúcares da Dieta/administração & dosagem , Hispânico ou Latino , Período Pós-Parto , Bebidas Adoçadas com Açúcar , Adulto , California , Dieta , Ingestão de Energia , Feminino , Humanos , Inquéritos Nutricionais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA