Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 55(1): 31-46, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24882211

RESUMO

MutS protein homolog 2 (MSH2) is a key DNA mismatch repair protein. It forms the MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSß) heterodimers, which help to ensure genomic integrity. MutSα not only recognizes and repairs mismatched nucleotides but also recognizes DNA adducts induced by DNA-damaging agents, and triggers cell-cycle arrest and apoptosis. Loss or depletion of MutSα from cells leads to microsatellite instability (MSI) and resistance to DNA damage. Although the level of MutSα can be reduced by the ubiquitin-proteasome pathway, the detailed mechanisms of this regulation remain elusive. Here we report that histone deacetylase 6 (HDAC6) sequentially deacetylates and ubiquitinates MSH2, leading to MSH2 degradation. In addition, HDAC6 significantly reduces cellular sensitivity to DNA-damaging agents and decreases cellular DNA mismatch repair activities by downregulation of MSH2. Overall, these findings reveal a mechanism by which proper levels of MutSα are maintained.


Assuntos
Histona Desacetilases/fisiologia , Proteína 2 Homóloga a MutS/metabolismo , Acetilação , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Camundongos , Estabilidade Proteica , Ubiquitinação
2.
Genes Dev ; 27(14): 1581-95, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23824326

RESUMO

Post-translational histone modifications play important roles in regulating chromatin structure and function. Histone H2B ubiquitination and deubiquitination have been implicated in transcriptional regulation, but the function of H2B deubiquitination is not well defined, particularly in higher eukaryotes. Here we report the purification of ubiquitin-specific peptidase 49 (USP49) as a histone H2B-specific deubiquitinase and demonstrate that H2B deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons. USP49 forms a complex with RuvB-like1 (RVB1) and SUG1 and specifically deubiquitinates histone H2B in vitro and in vivo. USP49 knockdown results in small changes in gene expression but affects the abundance of >9000 isoforms. Exons down-regulated in USP49 knockdown cells show both elevated levels of alternative splicing and a general decrease in splicing efficiency. Importantly, USP49 is relatively enriched at this set of exons. USP49 knockdown increased H2B ubiquitination (uH2B) levels at these exons as well as upstream 3' and downstream 5' intronic splicing elements. Change in H2B ubiquitination level, as modulated by USP49, regulates U1A and U2B association with chromatin and binding to nascent pre-mRNA. Although H3 levels are relatively stable after USP49 depletion, H2B levels at these exons are dramatically increased, suggesting that uH2B may enhance nucleosome stability. Therefore, this study identifies USP49 as a histone H2B-specific deubiquitinase and uncovers a critical role for H2B deubiquitination in cotranscriptional pre-mRNA processing events.


Assuntos
Histonas/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Complexo de Endopeptidases do Proteassoma , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/isolamento & purificação , Ubiquitinação
3.
Nature ; 449(7165): 1068-72, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17914355

RESUMO

Post-translational histone modifications have important regulatory roles in chromatin structure and function. One example of such modifications is histone ubiquitination, which occurs predominately on histone H2A and H2B. Although the recent identification of the ubiquitin ligase for histone H2A has revealed important roles for H2A ubiquitination in Hox gene silencing as well as in X-chromosome inactivation, the enzyme(s) involved in H2A deubiquitination and the function of H2A deubiquitination are not known. Here we report the identification and functional characterization of the major deubiquitinase for histone H2A, Ubp-M (also called USP16). Ubp-M prefers nucleosomal substrates in vitro, and specifically deubiquitinates histone H2A but not H2B in vitro and in vivo. Notably, knockdown of Ubp-M in HeLa cells results in slow cell growth rates owing to defects in the mitotic phase of the cell cycle. Further studies reveal that H2A deubiquitination by Ubp-M is a prerequisite for subsequent phosphorylation of Ser 10 of H3 and chromosome segregation when cells enter mitosis. Furthermore, we demonstrate that Ubp-M regulates Hox gene expression through H2A deubiquitination and that blocking the function of Ubp-M results in defective posterior development in Xenopus laevis. This study identifies the major deubiquitinase for histone H2A and demonstrates that H2A deubiquitination is critically involved in cell cycle progression and gene expression.


Assuntos
Ciclo Celular/fisiologia , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Proteínas de Xenopus/metabolismo , Animais , Divisão Celular , Endopeptidases/deficiência , Endopeptidases/genética , Genes Homeobox/genética , Células HeLa , Histonas/química , Proteínas de Homeodomínio/genética , Humanos , Fosfosserina/metabolismo , Especificidade por Substrato , Fatores de Transcrição/genética , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética
4.
J Biol Chem ; 286(9): 7190-201, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21183687

RESUMO

Post-translational histone modifications play important roles in regulating gene expression programs, which in turn determine cell fate and lineage commitment during development. One such modification is histone ubiquitination, which primarily targets histone H2A and H2B. Although ubiquitination of H2A and H2B has been generally linked to gene silencing and gene activation, respectively, the functions of histone ubiquitination during eukaryote development are not well understood. Here, we identified USP12 and USP46 as histone H2A and H2B deubiquitinases that regulate Xenopus development. USP12 and USP46 prefer nucleosomal substrates and deubiquitinate both histone H2A and H2B in vitro and in vivo. WDR48, a WD40 repeat-containing protein, interacts with USP12 and USP46 and is required for the histone deubiquitination activity. Overexpression of either gene leads to gastrulation defects without affecting mesodermal cell fate, whereas knockdown of USP12 in Xenopus embryos results in reduction of a subset of mesodermal genes at gastrula stages. Immunohistochemical staining and chromatin immunoprecipitation assays revealed that USP12 regulates histone deubiquitination in the mesoderm and at specific gene promoters during Xenopus development. Taken together, this study identifies USP12 and USP46 as histone deubiquitinases for H2A and H2B and reveals that USP12 regulates Xenopus development during gastrula stages.


Assuntos
Endopeptidases/metabolismo , Histonas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Cromatina/fisiologia , Embrião não Mamífero/fisiologia , Endopeptidases/genética , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células HeLa , Humanos , Mesoderma/embriologia , Mesoderma/fisiologia , Nucleossomos/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/fisiologia
5.
Stem Cells ; 29(2): 229-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21732481

RESUMO

Polycomb repressive complex two (PRC2) has been implicated in embryonic stem (ES) cell pluripotency; however, the mechanistic roles of this complex are unclear. It was assumed that ES cells contain PRC2 with the same subunit composition as that identified in HeLa cells and Drosophila embryos. Here, we report that PRC2 in mouse ES cells contains at least three additional subunits: JARID2, MTF2, and a novel protein denoted esPRC2p48. JARID2, MTF2, and esPRC2p48 are highly expressed in mouse ES cells compared to differentiated cells. Importantly, knockdowns of JARID2, MTF2, or esPRC2p48 alter the level of PRC2-mediated H3K27 methylation and result in the expression of differentiation-associated genes in ES cells. Interestingly, expression of JARID2, MTF2, and esPRC2p48 together, but not individually, enhances Oct4/Sox2/Klf4-mediated reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells, whereas knockdown or knockout of JARID2, MTF2, or esPRC2p48 significantly inhibits reprogramming. JARID2, MTF2, and esPRC2p48 modulate H3K27 methylation and facilitate repression of lineage-associated gene expression when transduced into MEFs, and synergistically stimulate the histone methyltransferase activity of PRC2 in vitro. Therefore, these studies identify JARID2, MTF2, and esPRC2p48 as important regulatory subunits of PRC2 in ES cells and reveal critical functions of these subunits in modulating PRC2's activity and gene expression both in ES cells and during somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/metabolismo
6.
Methods ; 54(3): 315-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21402158

RESUMO

Posttranslational histone modifications play an important role in regulating chromatin based nuclear processes including transcription. Of these modifications, histone ubiquitination is among the least understood. Histone ubiquitination predominately targets histones H2A and H2B. While ubiquitination of H2B is evolutionarily conserved from budding yeast to mammals, ubiquitination of H2A has not been detected in budding yeast, worms, or plants. Until recently, studies of histone ubiquitination lagged far behind the study of other histone modifications, largely because antibodies specific for ubiquitinated histones are difficult to generate. Despite this obstacle, the identification of the enzymatic machineries involved in histone ubiquitination, together with the successful use of a combination of genetic and immunoblot approaches to detect ubiquitinated histones, have helped to reveal important regulatory roles for this modification in transcriptional initiation and elongation, cell cycle progression, and DNA damage response. With the aid of the recently developed ubiquitinated histone-specific antibodies, an intriguing link between histone ubiquitination and cancer development has been established. While the enzymes involved in H2B ubiquitination were identified first in budding yeast and subsequently in higher organisms based on gene homology, the identification of the enzymatic machineries involved in H2A ubiquitination largely depended on a biochemical purification approach. The unbiased search for ubiquitin ligases targeting histones also led to the identification of a H3 and H4 ubiquitin ligase. Here we detail a protocol for the biochemical approach to identify histone ubiquitin ligase(s) from HeLa cells. Similar approaches have been successfully used to identify histone methyltransferases, histone demethylases, chromatin remodeling factors, and general transcription factors. So long as an in vitro enzymatic assay can be established, the approach we describe can be easily adapted to identify other histone and non-histone modifying enzymes.


Assuntos
Ubiquitina-Proteína Ligases/isolamento & purificação , Fracionamento Celular/métodos , Núcleo Celular/química , Cromatografia em Gel , Ensaios Enzimáticos , Células HeLa , Histonas/química , Histonas/isolamento & purificação , Humanos , Nuclease do Micrococo/química , Nucleossomos/química , Ubiquitina-Proteína Ligases/química , Ultracentrifugação
7.
Methods Mol Biol ; 523: 295-309, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381930

RESUMO

Posttranslational histone modifications play important roles in regulating chromatin structure and function (Martin and Zhang, Nat Rev Mol Cell Biol 6:838-849, 2005; Jenuwein and Allis, Science 293:1074-1080, 2001). One example of such modifications is histone ubiquitination, which occurs predominately on H2A and H2B. Recent studies have highlighted important regulatory roles of H2A ubiquitination in Polycomb group proteins-mediated gene silencing (Wang et al., Nature 431:873-878, 2004; Joo et al., Nature 449:1068-1072, 2007) and H2B ubiquitination in transcription, H3 methylation, and DNA methylation (Zhang, Genes Dev 17:2733-2740, 2003; Sun and Allis, Nature 418:104-108, 2002; Sridhar et al., Nature 447:735-738, 2007). Here we describe methods for in vitro histone ubiquitination and deubiquitination assays. We also describe approaches to investigate the in vivo function of a putative histone ubiquitin ligase and deubiquitinase. These experimental procedures are largely based on our studies in mammalian cells. These methods should provide useful tools for studying this bulky histone modification.


Assuntos
Bioensaio/métodos , Histonas/metabolismo , Ubiquitinação , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ubiquitina/metabolismo
8.
Methods Mol Biol ; 1288: 213-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25827882

RESUMO

Posttranslational histone modifications play important roles in regulating chromatin structure and function (Rando, Curr Opin Genet Dev 22:148-155, 2012; Zentner and Henikoff, Nat Struct Mol Biol 20:259-266, 2013). One example of such modifications is histone ubiquitination, which occurs predominately on H2A and H2B. Recent studies have highlighted important regulatory roles of H2A ubiquitination in Polycomb group protein-mediated gene silencing and DNA damage repair (de Napoles et al., Dev Cell 7:663-676, 2004; Wang et al., Nature 431:873-878, 2004; Doil et al., Cell 136:435-446, 2009; Gatti et al., Cell Cycle 11:2538-2544, 2012; Mattiroli et al., Cell 150:1182-1195, 2012; Stewart et al., Cell 136:420-434, 2009; Bergink et al., Genes Dev 20:1343-1352, 2006; Facchino et al., J Neurosci 30:10096-10111, 2010; Ginjala et al., Mol Cell Biol 31:1972-1982, 2011; Ismail et al., J Cell Biol 191:45-60, 2010), H2B ubiquitination in transcription initiation and elongation (Xiao et al., Mol Cell Biol 25:637-651, 2005; Kao et al., Genes Dev 18:184-195, 2004; Pavri et al., Cell 125:703-717, 2006; Kim et al., Cell 137:459-471, 2009), pre-mRNA splicing (Jung et al. Genome Res 22:1026-1035, 2012; Shieh et al., BMC Genomics 12:627, 2011; Zhang et al., Genes Dev 27:1581-1595, 2013), nucleosome stabilities (Fleming et al., Mol Cell 31:57-66, 2008; Chandrasekharan et al., Proc Natl Acad Sci U S A 106:16686-16691, 2009), H3 methylation (Sun and Allis, Nature 418:104-108, 2002; Briggs et al., Nature 418:498, 2002; Dover et al., J Biol Chem 277:28368-28371, 2002; Ng et al., J Biol Chem 277:34655-34657, 2002), and DNA methylation (Sridhar et al., Nature 447:735-738, 2007). Here we describe methods for in vitro histone ubiquitination and deubiquitination assays. We also describe approaches to investigate the in vivo function of putative histone ubiquitin ligase(s) and deubiquitinase(s). These experimental procedures are largely based on our studies in mammalian cells. These methods should provide useful tools for studying this bulky histone modification.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Ubiquitinação , Anticorpos Monoclonais , Histonas/genética , Imunoprecipitação/métodos , Técnicas In Vitro
9.
Cell Cycle ; 12(19): 3219-27, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24013421

RESUMO

In eukaryotic cells, genomic DNA is organized into a chromatin structure, which not only serves as the template for DNA-based nuclear processes, but also as a platform integrating intracellular and extracellular signals. Although much effort has been spent to characterize chromatin modifying/remodeling activities, little is known about cell signaling pathways targeting these chromatin modulators. Here, we report that cyclin-dependent kinase 1 (CDK1) phosphorylates the histone H2A deubiquitinase Ubp-M at serine 552 (S552P), and, importantly, this phosphorylation is required for cell cycle progression. Mass spectrometry analysis confirmed Ubp-M is phosphorylated at serine 552, and in vitro and in vivo assays demonstrated that CDK1/cyclin B kinase is responsible for Ubp-M S552P. Interestingly, Ubp-M S552P is not required for Ubp-M tetramer formation, deubiquitination activity, substrate specificity, or regulation of gene expression. However, Ubp-M S552P is required for cell proliferation and cell cycle G 2/M phase progression. Ubp-M S552P reduces Ubp-M interaction with nuclear export protein CRM1 and facilitates Ubp-M nuclear localization. Therefore, these studies confirm that Ubp-M is phosphorylated at S552 and identify CDK1 as the enzyme responsible for the phosphorylation. Importantly, this study specifically links Ubp-M S552P to cell cycle G 2/M phase progression.


Assuntos
Proteína Quinase CDC2/metabolismo , Ubiquitina Tiolesterase/metabolismo , Motivos de Aminoácidos , Pontos de Checagem do Ciclo Celular , Divisão Celular , Proliferação de Células , Fase G2 , Células HeLa , Humanos , Carioferinas/metabolismo , Fosforilação , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Serina/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Proteína Exportina 1
10.
Mol Cell ; 22(3): 383-94, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16678110

RESUMO

Posttranslational histone modifications play important roles in transcription and other chromatin-based processes. Compared to acetylation, methylation, and phosphorylation, very little is known about the function of histone ubiquitylation. Here, we report the purification and functional characterization of a histone H3 and H4 ubiquitin ligase complex, CUL4-DDB-ROC1. We demonstrate that CUL4-DDB-ROC1-mediated H3 and H4 ubiquitylation occurs both in vitro and in vivo. Importantly, CUL4-DDB-ROC1-mediated H3 and H4 ubiquitylation is regulated by UV irradiation. Reduction of histone H3 and H4 ubiquitylation by knockdown of CUL4A impairs recruitment of the repair protein XPC to the damaged foci and inhibits the repair process. Biochemical studies indicate that CUL4-DDB-ROC1-mediated histone ubiquitylation weakens the interaction between histones and DNA and facilitates the recruitment of repair proteins to damaged DNA. Thus, our studies uncover CUL4-DDB-ROC1 as a histone ubiquitin ligase and demonstrate that histone H3 and H4 ubiquitylation participates in the cellular response to DNA damage.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Ubiquitina/metabolismo , Células HeLa , Histonas/isolamento & purificação , Humanos , Nucleossomos/metabolismo , RNA Interferente Pequeno/genética , Ubiquitina/efeitos da radiação , Complexos Ubiquitina-Proteína Ligase/isolamento & purificação , Raios Ultravioleta
11.
Taehan Kan Hakhoe Chi ; 8(4): 371-80, 2002 Dec.
Artigo em Coreano | MEDLINE | ID: mdl-12506241

RESUMO

BACKGROUND/AIMS: Hepatitis B virus (HBV) is the etiological factor for hepatocellular carcinoma (HCC). Numerous evidence has indicated a link between chronic infection with HBV and the development of HCC. Among the four proteins encoded by HBV, Hepatitis B virus X gene(HBx), best characterized as a transcriptional transactivator, gained attention owing to its presumptive role in oncogenesis. Further, HBx has been shown to stimulate signal transduction pathways such as Ras-MAPK pathway, NF-kappa B, and Src kinase. The pleiotropic events caused by HBx may be the key to understanding the HBV-mediated oncogenicity. However, the specific roles of HBx in oncogenesis remain largely elusive. To explore the role of HBx in hepatocarcinogenesis, we examined the deregulation of host genes induced by HBx expression. METHODS: HBx was ectopically expressed in HepG2 cells using a recombinant adenovirus to transiently express HBx. Gene expression profiling of HBx was conducted on cDNA microarrays that contained 1,028 cDNAs. RESULTS: A number of oncogenes and genes that are involved in cell growth, DNA repair, cell cycle regulation, and cell motility were deregulated by HBx. CONCLUSIONS: Theses results suggest that HBx regulates transcription in a way that contributes to the proliferation of hepatocytes, a probable early event of HCC.


Assuntos
Carcinoma Hepatocelular/virologia , Perfilação da Expressão Gênica , Genes Virais/fisiologia , Vírus da Hepatite B/genética , Neoplasias Hepáticas/virologia , Transativadores/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Vetores Genéticos , Antígenos da Hepatite B/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Transativadores/fisiologia , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA