RESUMO
OBJECTIVE: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. METHODS: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. RESULTS: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. CONCLUSION: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.
RESUMO
Objective: The objective was to investigate growth performance, antioxidant enzyme activity, intestinal morphology, immune cell distribution, short chain fatty acid (SCFA) profile, and microbiota in broiler chickens fed a diet containing Lacticaseibacillus paracasei NSMJ15. Methods: A total of 120-day-old Ross 308 male broilers were allocated to 2 dietary treatments in a randomized complete block design. A control group was fed a corn-soybean meal control diet, and an NSMJ15-supplemented group was fed a control diet supplemented with 1 g/kg L. paracasei NSMJ15 at the expense of cornstarch. Each dietary treatment had 6 replicates with 10 birds per cage. Growth performance was recorded on day 9. On day 10, one bird representing median body weight was selected to collect serum for antioxidant enzyme activity, jejunal tissue for immune cell isolation and morphometric analysis, and cecal digesta for 16S rRNA gene sequencing and SCFA analysis. Results: Supplementation of L. paracasei NSMJ15 did not affect growth performance, serum antioxidant enzyme activity, and jejunal histomorphology compared to the control group. In the NSMJ15-supplemented group, the population of CD3+CD4+CD8- T cells increased (p=0.010), while the population of CD3+CD8+TCRγδ+ T cells decreased (p=0.022) compared to the control group. The L. paracasei NSMJ15 supplementation decreased (p=0.022) acetate concentration in the cecal digesta compared to the control group. The 16S rRNA gene sequencing analysis showed that NSMJ15-supplemented group differentially expressed (p<0.05) 10 more amplicon sequence variants compared to control group without affecting alpha and beta diversity indices of the cecal microbiota. Genera Mediterraneibacter and Negativibacillus were positively (p<0.05) correlated with CD4+ T cells, while genera Gemmiger, Coprococcus, Sellimonas, Massilimicrobiota, and Blautia were negatively (p<0.05) correlated with SCFA concentration. Conclusion: The results of the present study suggest dietary L. paracasei NSMJ15 supplementation may increase percentage of CD4+ T cells and decrease acetate concentration in broiler chickens by increasing the differential expression of specific microbial genera.
RESUMO
This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.
Assuntos
Lacticaseibacillus paracasei , Microbiota , Probióticos , Animais , Feminino , Antioxidantes , Galinhas , Dieta/veterinária , Probióticos/farmacologia , Probióticos/análise , Suplementos Nutricionais/análise , Ração Animal/análiseRESUMO
A feeding trial was conducted to investigate the effect of dietary supplementation of Chlorella vulgaris (CV) or Tetradesmus obliquus (TO) on laying performance, egg quality, and gut health indicators of laying hens. A total of 144 Hy-Line Brown laying hens aged 21 weeks were randomly assigned to one of three dietary treatments with eight replicates of six hens. Dietary treatments were as follows: CON, basal diet; CV, basal diet + 5 g C. vulgaris/kg of diet; TO, basal diet + 5 g T. obliquus/kg of diet. The results showed that diets supplemented with CV or TO had insignificant effects on laying performance, egg quality (i.e., Haugh unit and eggshell strength and thickness), jejunal histology, cecal short-chain fatty acids, and antioxidant/immune markers in ileal mucosa samples of laying hens. Compared with the control group, the egg yolk color score was higher (p < 0.05) in laying hens fed on diets containing CV and TO, although the former was a more intense yellow than the latter. Small intestinal lamina propria cells were isolated using flow cytometry to examine the percentages of immune cell subpopulations. Dietary microalgae did not affect B cells or monocytes/macrophages but altered the percentage of CD4+ T cells and CD8- TCR γδ T cells. Collectively, diets supplemented with C. vulgaris or T. obliquus can improve egg yolk color and would modulate host immune development and competence in laying hens.
RESUMO
This study aimed to evaluate the effects of dietary Chlorella vulgaris (CV) on the distribution of immune cells, intestinal morphology, intestinal barrier function, antioxidant markers, and the cecal microbiome in 10-day-old broiler chickens. A total of 120 day-old Ross 308 male broiler chicks were assigned to two dietary treatments using a randomized complete block design, with body weight as the blocking factor. Birds fed a diet containing CV showed an increase in CD4+ T cells (p < 0.05) compared to those fed the control diet. The relative mRNA expression of intestinal epithelial barrier function-related markers (occludin and avian ß-defensin 5) was elevated (p < 0.05) in the CV-supplemented group compared to the control group. The alpha diversity indices (Chao1 and observed features) of the cecal microbiome in 10-day-old birds increased (p < 0.05), indicating higher richness within the cecal bacterial community. In the microbiome analysis, enriched genera abundance of Clostridium ASF356 and Coriobacteriaceae CHKCI002 was observed in birds fed the diet containing CV compared to those fed the control diet. Taken together, dietary CV supplementation might alter intestinal barrier function, immunity, and microbiomes in 10-day-old broiler chickens.
RESUMO
Growing evidence suggests that there is an essential link between the gut and lungs. Asthma is a common chronic inflammatory disease and is considered a heterogeneous disease. While it has been documented that eosinophilic asthma affects gut immunity and the microbiome, the effect of other types of asthma on the gut environment has not been examined. In this study, we utilized an OVA/poly I:C-induced mixed granulocytic asthma model and found increased Tregs without significant changes in other inflammatory cells in the colon. Interestingly, an altered gut microbiome has been observed in a mixed granulocytic asthma model. We observed an increase in the relative abundance of the Faecalibaculum genus and Erysipelotrichaceae family, with a concomitant decrease in the relative abundance of the genera Candidatus arthromitus and Streptococcus. The altered gut microbiome leads to changes in the abundance of genes associated with microbial metabolism, such as glycolysis. We found that mixed granulocytic asthma mainly affects the gut microbial composition and metabolism, which may have important implications in the severity and development of asthma and gut immune homeostasis. This suggests that altered gut microbial metabolism may be a potential therapeutic target for patients with mixed granulocytic asthma.
RESUMO
Gut health has been attracting attention in the livestock industry as several studies suggest that it is a crucial factor for growth performance and general health status in domestic animals, including broiler chickens. Previously, antibiotics were widely used to improve livestock growth, but their use is now prohibited due to serious problems related to antibiotic resistance. Thus, finding new feed additives to replace antibiotics is drawing attention. Probiotics are representative feed additives and many beneficial effects on broiler chickens have been reported. However, many probiotic studies are focused on productivity only, and there are insufficient studies related to the gut environment, especially gut immunity and gut microbiome. In this study, we conducted an animal experiment using Lacticaseibacillus paracasei NSMJ56 to determine whether it has beneficial effects on gut immunity and microbiome. To evaluate the effects of NSMJ56 supplementation, newly hatched Ross 308 broiler chickens were fed an NSMJ56-containing diet for 10 days, and growth performance, antioxidant indicators, gut morphology, gut immunity-related parameters, and gut microbiome were analyzed. Flow cytometry analysis results revealed that NSMJ56 treatment increased CD4+ T cells and decreased CD8+ T cells in small intestine lamina propria and decreased IL1b and IL10 gene expression in small intestine tissue. In the microbiome analysis, NSMJ56 treatment increased the alpha diversity indices and led to three enriched genera: Massilimicrobiota, Anaerotignum, and Coprococcus. This study suggests that NSMJ56 supplementation has regulatory effects on gut immunity and microbiome in early-age broiler chickens.
RESUMO
Pig models provide valuable research information on farm animals, veterinary, and biomedical sciences. Experimental pig gut models are used in studies on physiology, nutrition, and diseases. Intestinal organoids are powerful tools for investigating intestinal functions such as nutrient uptake and gut barrier function. However, organoids have a basal-out structure and need to grow in the extracellular matrix, which causes difficulties in research on the intestinal apical membrane. We established porcine intestinal organoids from jejunum tissues and developed basal-out and apical-out organoids using different sub-culture methods. Staining and quantitative real-time PCR showed the difference in axis change of the membrane and gene expression of epithelial cell marker genes. To consider the possibility of using apical-out organoids for intestinal function, studies involving fatty acid uptake and disruption of the epithelial barrier were undertaken. Fluorescence fatty acid was more readily absorbed in apical-out organoids than in basal-out organoids within the same time. To determine whether apical-out organoids form a functional barrier, a fluorescent dextran diffusion assay was performed. Hence, we successfully developed porcine intestinal organoid culture systems and showed that the porcine apical-out organoid model is ideal for the investigation of the intestinal environment. It can be used in future studies related to the intestine across various research fields.
RESUMO
Owing to increasing global temperatures, heat stress is a major problem affecting dairy cows, and abnormal metabolic responses during heat stress likely influence dairy cow immunity. However, the mechanism of this crosstalk between metabolism and immunity during heat stress remains unclear. We used two representative dairy cow breeds, Holstein and Jersey, with distinct heat-resistance characteristics. To understand metabolic and immune responses to seasonal changes, normal environmental and high-heat environmental conditions, we assessed blood metabolites and immune cell populations. In biochemistry analysis from sera, we found that variety blood metabolites were decreased in both Holstein and Jersey cows by heat stress. We assessed changes in immune cell populations in peripheral blood mononuclear cells (PBMCs) using flow cytometry. There were breed-specific differences in immune-cell population changes. Heat stress only increased the proportion of B cells (CD4-CD21+) and heat stress tended to decrease the proportion of monocytes (CD11b+CD172a+) in Holstein cows. Our findings expand the understanding of the common and specific changes in metabolism and immune response of two dairy cow breeds under heat stress conditions.
RESUMO
Heat stress has detrimental effects on livestock via diverse immune and physiological changes; heat-stressed animals are rendered susceptible to diverse diseases. However, there is relatively little information available regarding the altered immune responses of domestic animals in heat stress environments, particularly in cattle steers. This study aimed to determine the changes in the immune responses of Holstein and Jersey steers under heat stress. We assessed blood immune cells and their functions in the steers of two breeds under normal and heat stress conditions and found that immune cell proportions and functions were altered in response to different environmental conditions. Heat stress notably reduced the proportions of CD21+MHCII+ B cell populations in both breeds. We also observed breed-specific differences. Under heat stress, in Holstein steers, the expression of myeloperoxidase was reduced in the polymorphonuclear cells, whereas heat stress reduced the WC1+ γδ T cell populations in Jersey steers. Breed-specific changes were also detected based on gene expression. In response to heat stress, the expression of IL-10 and IL-17A increased in Holstein steers alone, whereas that of IL-6 increased in Jersey steers. Moreover, the mRNA expression pattern of heat shock protein genes such as Hsp70 and Hsp90 was significantly increased in only Holstein steers. Collectively, these results indicate that altered blood immunological profiles may provide a potential explanation for the enhanced susceptibility of heat-stressed steers to disease. The findings of this study provide important information that will contribute to developing new strategies to alleviate the detrimental effects of heat stress on steers.
Assuntos
Células Sanguíneas/citologia , Sangue/metabolismo , Resposta ao Choque Térmico/imunologia , Temperatura Alta , Neutrófilos/citologia , Animais , Sangue/imunologia , Células Sanguíneas/imunologia , Bovinos , Transtornos de Estresse por Calor/imunologia , Lactação/imunologia , Lactação/fisiologia , Neutrófilos/imunologiaRESUMO
The microbial community within the rumen can be changed and shaped by heat stress. Accumulating data have suggested that different breeds of dairy cows have differential heat stress resistance; however, the underlying mechanism by which nonanimal factors contribute to heat stress are yet to be understood. This study is designed to determine changes in the rumen microbiome of Holstein and Jersey cows to normal and heat stress conditions. Under heat stress conditions, Holstein cows had a significantly higher respiration rate than Jersey cows. Heat stress increased the rectal temperature of Holstein but not Jersey cows. In the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, Jersey cows had a significantly higher proportion of genes associated with energy metabolism in the normal condition than that with other treatments. Linear discriminant analysis effect size (LEfSe) results identified six taxa as distinguishing taxa between normal and heat stress conditions in Holstein cows; in Jersey cows, 29 such taxa were identified. Changes in the rumen bacterial taxa were more sensitive to heat stress in Jersey cows than in Holstein cows, suggesting that the rumen mechanism is different in both breeds in adapting to heat stress. Collectively, distinct changes in rumen bacterial taxa and functional gene abundance in Jersey cows may be associated with better adaptation ability to heat stress.
RESUMO
Heat stress has been reported to affect the immunity of dairy cows. However, the mechanisms through which this occurs are not fully understood. Two breeds of dairy cow, Holstein and Jersey, have distinct characteristics, including productivity, heat resistance, and disease in high-temperature environments. The objective of this study is to understand the dynamics of the immune response of two breeds of dairy cow to environmental change. Ribonucleic acid sequencing (RNA-seq) results were analyzed to characterize the gene expression change of peripheral blood mononuclear cells (PBMCs) in Holstein and Jersey cows between moderate temperature-humidity index (THI) and high THI environmental conditions. Many of the differentially expressed genes (DEGs) identified are associated with critical immunological functions, particularly phagocytosis, chemokines, and cytokine response. Among the DEGs, CXCL3 and IL1A were the top down-regulated genes in both breeds of dairy cow, and many DEGs were related to antimicrobial immunity. Functional analysis revealed that cytokine and chemokine response-associated pathways in both Holstein and Jersey PBMCs were the most important pathways affected by the THI environmental condition. However, there were also breed-specific genes and pathways that altered according to THI environmental condition. Collectively, there were both common and breed-specific altered genes and pathways in Holstein and Jersey cows. The findings of this study expand our understanding of the dynamics of immunity in different breeds of dairy cow between moderate THI and high THI environmental conditions.
RESUMO
Weaned calves are susceptible to infectious diseases because of the stress and malnutrition that occurs during weaning. Therefore, the dairy industry requires effective feed additives to ameliorate stress responses and promote immunity. This study aimed to investigate the effects of hydrolyzed yeast (HY) supplementation on the growth performance, immune and stress parameters, and health status of calves after weaning. Eighteen Holstein calves were randomly assigned to two groups, either receiving a control calf starter or 0.2% HY calf starter from one week of age. All calves were weaned at six weeks of age as a stress challenge. The HY-fed calves had a significantly-higher body weight gain during the post-weaning period (kg/week) compared to the control. Cortisol levels at three days post-weaning (DPW) were significantly lower in the HY group than the control group. Calves fed HY had significantly-higher serum levels of tumor necrosis factor-α and interleukin-1ß at one DPW. The HY-fed calves also had higher concentrations of the acute-phase proteins, haptoglobin, serum amyloid A, and transferrin at one DPW. In addition, the diarrhea severity in HY-fed calves was milder after weaning compared to the control group. Our results indicate that HY supplementation reduces stress responses and may promote innate immunity in newly-weaned calves.