Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Exp Mol Pathol ; 128: 104807, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798063

RESUMO

Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a highly reactive bifunctional alkylating agent synthesized for chemical warfare. The eyes are particularly sensitive to SM where it causes irritation, pain, photophobia, and blepharitis, depending on the dose and duration of exposure. In these studies, we examined the effects of SM vapor on the corneas of New Zealand white male rabbits. Edema and hazing of the cornea, signs of acute injury, were observed within one day of exposure to SM, followed by neovascularization, a sign of chronic or late phase pathology, which persisted for at least 28 days. Significant epithelial-stromal separation ranging from ~8-17% of the epithelial surface was observed. In the stroma, there was a marked increase in CD45+ leukocytes and a decrease of keratocytes, along with areas of disorganization of collagen fibers. SM also disrupted the corneal basement membrane and altered the expression of perlecan, a heparan sulfate proteoglycan, and cellular fibronectin, an extracellular matrix glycoprotein. This was associated with an increase in basement membrane matrix metalloproteinases including ADAM17, which is important in remodeling of the basement membrane during wound healing. Tenascin-C, an extracellular matrix glycoprotein, was also upregulated in the stroma 14-28 d post SM, a finding consistent with its role in organizing structural components of the stroma necessary for corneal transparency. These data demonstrate that SM vapor causes persistent alterations in structural components of the cornea. Further characterization of SM-induced injury in rabbit cornea will be useful for the identification of targets for the development of ocular countermeasures.


Assuntos
Lesões da Córnea , Gás de Mostarda , Masculino , Coelhos , Animais , Gás de Mostarda/toxicidade , Proteoglicanas de Heparan Sulfato/metabolismo , Tenascina/metabolismo , Fibronectinas/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/metabolismo , Membrana Basal/metabolismo , Membrana Basal/patologia , Matriz Extracelular/metabolismo , Alquilantes , Sulfetos/metabolismo , Colágeno/metabolismo
2.
Exp Mol Pathol ; 121: 104656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081961

RESUMO

Sulfur mustard (SM; bis (2-chloroethyl) sulfide) is a potent vesicant which causes irritation of the conjunctiva and damage to the cornea. In the present studies, we characterized the ocular effects of SM in New Zealand white rabbits. Within one day of exposure to SM, edema and hazing of the cornea were observed, followed by neovascularization which persisted for at least 28 days. This was associated with upper and lower eyelid edema and conjunctival inflammation. The conjunctiva is composed of a proliferating epithelium largely consisting of stratified columnar epithelial cells overlying a well-defined dermis. Superficial layers of the conjunctival epithelium were found to express keratin 1, a marker of differentiating squamous epithelium, while in cells overlying the basement membrane expressed keratin 17, a marker of stratified squamous epithelium. SM exposure upregulated keratin 17 expression. Mucin 5 ac producing goblet cells were interspersed within the conjunctiva. These cells generated both acidic and neutral mucins. Increased numbers of goblet cells producing neutral mucins were evident after SM exposure; upregulation of expression of membrane-associated mucin 1 and mucin 4 in the superficial layers of the conjunctival epithelium were also noted. These data demonstrate that ocular exposure of rabbits to SM causes significant damage not only to the cornea, but to the eyelid and conjunctiva, suggesting multiple targets within the eye that should be assessed when evaluating the efficacy of potential countermeasures.


Assuntos
Substâncias para a Guerra Química/toxicidade , Túnica Conjuntiva/patologia , Córnea/patologia , Epitélio/patologia , Células Caliciformes/patologia , Gás de Mostarda/toxicidade , Animais , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Córnea/efeitos dos fármacos , Córnea/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Masculino , Mucina-1/metabolismo , Mucina-4/metabolismo , Coelhos
3.
Lab Invest ; 100(9): 1158-1168, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32404932

RESUMO

Alcoholic fatty liver disease (AFLD) is one of the major causes of liver morbidity and mortality worldwide. We have previously shown that whole-body, but not hepatocyte-specific, deficiency of farnesoid X receptor (FXR) in mice worsens AFLD, suggesting that extrahepatic FXR deficiency is critical for AFLD development. Intestinal FXR is critical in suppressing hepatic bile acid (BA) synthesis by inducing fibroblast growth factor 15 (FGF15) in mice and FGF19 in humans. We hypothesized that intestinal FXR is critical for reducing AFLD development in mice. To test this hypothesis, we compared the AFLD severity in wild type (WT) and intestine-specific Fxr knockout (FXRInt-/-) mice following treatment with control or ethanol-containing diet. We found that FXRInt-/- mice were more susceptible to ethanol-induced liver steatosis and inflammation, compared with WT mice. Ethanol treatment altered the expression of hepatic genes involved in lipid and BA homeostasis, and ethanol detoxification. Gut FXR deficiency increased intestinal permeability, likely due to reduced mucosal integrity, as revealed by decreased secretion of Mucin 2 protein and lower levels of E-cadherin protein. In summary, intestinal FXR may protect AFLD development by maintaining gut integrity.


Assuntos
Etanol/farmacologia , Mucosa Intestinal/metabolismo , Hepatopatias Alcoólicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares , Etanol/administração & dosagem , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Citoplasmáticos e Nucleares/deficiência
4.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G518-G530, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905021

RESUMO

Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.


Assuntos
Adiposidade , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/deficiência , Motilidade Gastrointestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Aumento de Peso , Animais , Morte Celular , Defecação , Metabolismo Energético , Enterócitos/metabolismo , Enterócitos/patologia , Proteínas de Ligação a Ácido Graxo/genética , Fezes/química , Deleção de Genes , Genótipo , Absorção Intestinal , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fatores de Tempo
5.
Exp Mol Pathol ; 114: 104410, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32113906

RESUMO

Nitrogen mustard (NM) is a highly reactive bifunctional alkylating agent that induces inflammation, edema and blistering in skin. An important mechanism mediating the action of NM and related mustards is oxidative stress. In these studies a modified murine patch-test model was used to analyze DNA damage and the antioxidant/stress response following NM exposure in isolated epidermis. NM (20 µmol) was applied to glass microfiber filters affixed to a shaved dorsal region of skin of CD-1 mice. NM caused structural damage to the stratum corneum as reflected by increases in transepidermal water loss and skin hydration. This was coordinate with edema, mast cell degranulation and epidermal hyperplasia. Within 3 h of NM exposure, a 4-fold increase in phosphorylated histone H2AX, a marker of DNA double-stranded breaks, and a 25-fold increase in phosphorylated p53, a DNA damage marker, were observed in the epidermis. This was associated with a 40% increase in 8-oxo-2'-deoxyguanosine modified DNA in the epidermis and a 4-fold increase in 4-hydroxynonenal modified epidermal proteins. At 12 h post NM, there was a 3-75 fold increase in epidermal expression of antioxidant/stress proteins including heme oxygenase-1, thioredoxin reductase, superoxide dismutase, glutathione reductase, heat shock protein 27 and cyclooxygenase 2. These data indicate that NM induces early oxidative epidermal injury in mouse skin leading to an antioxidant/stress response. Agents that enhance this response may be useful in mitigating mustard-induced skin injury.


Assuntos
Antioxidantes/metabolismo , Epiderme/metabolismo , Mecloretamina/farmacologia , Estresse Fisiológico/genética , Alquilantes/farmacologia , Alquilantes/toxicidade , Animais , Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dano ao DNA/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Glutationa Redutase/genética , Proteínas de Choque Térmico HSP27/genética , Heme Oxigenase-1/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Mecloretamina/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Superóxido Dismutase/genética , Tiorredoxina Dissulfeto Redutase/genética
6.
Exp Mol Pathol ; 115: 104470, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445752

RESUMO

Sulfur mustard (SM), a dermal vesicant that has been used in chemical warfare, causes inflammation, edema and epidermal erosions depending on the dose and time following exposure. Herein, a minipig model was used to characterize wound healing following dermal exposure to SM. Saturated SM vapor caps were placed on the dorsal flanks of 3-month-old male Gottingen minipigs for 30 min. After 48 h the control and SM wounded sites were debrided daily for 7 days with wet to wet saline gauze soaks. Animals were then euthanized, and full thickness skin biopsies prepared for histology and immunohistochemistry. Control skin contained a well differentiated epidermis with a prominent stratum corneum. A well-developed eschar covered the skin of SM treated animals, however, the epidermis beneath the eschar displayed significant wound healing with a hyperplastic epidermis. Stratum corneum shedding and a multilayered basal epithelium consisting of cuboidal and columnar cells were also evident in the neoepidermis. Nuclear expression of proliferating cell nuclear antigen (PCNA) was contiguous in cells along the basal epidermal layer of control and SM exposed skin; SM caused a significant increase in PCNA expression in basal and suprabasal cells. SM exposure was also associated with marked changes in expression of markers of wound healing including increases in keratin 10, keratin 17 and loricrin and decreases in E-cadherin. Trichrome staining of control skin showed a well-developed collagen network with no delineation between the papillary and reticular dermis. Conversely, a major delineation was observed in SM-exposed skin including a web-like papillary dermis composed of filamentous extracellular matrix, and compact collagen fibrils in the lower reticular dermis. Although the dermis below the wound site was disrupted, there was substantive epidermal regeneration following SM-induced injury. Further studies analyzing the wound healing process in minipig skin will be important to provide a model to evaluate potential vesicant countermeasures.


Assuntos
Gás de Mostarda/toxicidade , Pele/patologia , Cicatrização , Animais , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Epiderme/patologia , Proteínas de Membrana/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pele/efeitos dos fármacos , Suínos , Porco Miniatura , Cicatrização/efeitos dos fármacos
7.
Bioorg Chem ; 103: 104128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745761

RESUMO

A set of 4-(R2-imino)-3-mercapto-5-(R1)-4H-1,2,4-triazoles derivatives were synthesized, characterized and evaluated for their ability to inhibit nitric oxide (NO) production in PAM212 mouse keratinocytes, which led to the discovery and the subsequent evaluation of their growth inhibitory cytotoxic potency toward that same mouse cell line together with a number of human cells lines (PC3, HT-29 and HeLa). Some limited SAR could be established for both NO production inhibition potency and growth inhibition cytotoxicity. Noticeably, the compounds designed to be nitrofurantoin mimics were the most potent anti-neoplastic agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores do Crescimento/farmacologia , Iminas/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores do Crescimento/síntese química , Inibidores do Crescimento/química , Iminas/síntese química , Iminas/química , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
8.
Pharmacol Res ; 141: 331-342, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610963

RESUMO

The BCRP/ABCG2 efflux transporter is expressed on the membrane of placental syncytiotrophoblasts and protects the fetus from toxicant exposure. Syncytiotrophoblasts arise from the fusion of cytotrophoblasts, a process negatively regulated by the endocannabinoid, anandamide (AEA). It is unknown whether AEA can influence fetal concentrations of xenobiotics by modulating the expression of transporters in syncytiotrophoblasts. Here, we sought to characterize and identify the mechanism(s) responsible for AEA-mediated down-regulation of the BCRP transporter in human placental explants and BeWo trophoblasts. Treatment of human placental explants with AEA (1 µM, 24 h) reduced hCGα, syncytin-1, and BCRP mRNAs by ˜30%. Similarly, treatment of BeWo trophoblasts with AEA (0-10 µM, 3-24 h) coordinately down-regulated mRNAs for hCGß, syncytin-2, and BCRP. In turn, AEA increased the sensitivity of trophoblasts to the cytotoxicity of mitoxantrone, a known BCRP substrate, and environmental and dietary contaminants including mycoestrogens and perfluorinated chemicals. AEA-treated trophoblasts also demonstrated reduced BCRP transport of the mycoestrogen zearalenone and the diabetes drug glyburide, labeled with BODIPY. The AEA-mediated reduction of BCRP mRNA was abrogated when placental cells were co-treated with AM630, a CB2 receptor inhibitor, or 8-Br-cAMP, a cAMP analog. AEA reduced intracellular cAMP levels in trophoblasts by 75% at 1 h, and completely inhibited forskolin-induced phosphorylation of the cAMP response element binding protein (CREB). AEA also decreased p-CREB binding to the BCRP promoter. Taken together, our data indicate that AEA down-regulates placental transporter expression and activity via CB2-cAMP signaling. This novel mechanism may explain the repression of placental BCRP expression observed during diseases of pregnancy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Endocanabinoides/farmacologia , Proteínas de Neoplasias/genética , Placenta/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Adulto , Linhagem Celular , Feminino , Humanos , Placenta/citologia , Placenta/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 112(9): 2693-8, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691739

RESUMO

Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes.


Assuntos
Aterosclerose/tratamento farmacológico , Carboidratos , Macrófagos/metabolismo , Nanopartículas , Placa Aterosclerótica/tratamento farmacológico , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Lipídeos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Oxirredução , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
10.
Biomacromolecules ; 18(2): 363-373, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28026947

RESUMO

Kojic acid (KA) is a naturally occurring fungal metabolite that is utilized as a skin-lightener and antibrowning agent owing to its potent tyrosinase inhibition activity. While efficacious, KA's inclination to undergo pH-mediated, thermal-, and photodegradation reduces its efficacy, necessitating stabilizing vehicles. To minimize degradation, poly(carbonate-esters) and polyesters comprised of KA and natural diacids were prepared via solution polymerization methods. In vitro hydrolytic degradation analyses revealed KA release was drastically influenced by polymer backbone composition (e.g., poly(carbonate-ester) vs polyester), linker molecule (aliphatic vs heteroatom-containing), and release conditions (physiological vs skin). Tyrosinase inhibition assays demonstrated that aliphatic KA dienols, the major degradation product under skin conditions, were more potent then KA itself. All dienols were found to be less toxic than KA at all tested concentrations. Additionally, the most lipophilic dienols were statistically more effective than KA at inhibiting melanin biosynthesis in cells. These KA-based polymer systems deliver KA analogues with improved efficacy and cytocompatible profiles, making them ideal candidates for sustained topical treatments in both medical and personal care products.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Melaninas/biossíntese , Melanoma Experimental/tratamento farmacológico , Polímeros/administração & dosagem , Polímeros/química , Pironas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Melaninas/antagonistas & inibidores , Camundongos , Células NIH 3T3 , Polimerização , Células Tumorais Cultivadas
11.
Toxicol Appl Pharmacol ; 303: 30-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27125198

RESUMO

Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.


Assuntos
Alquilantes/toxicidade , Substâncias para a Guerra Química/toxicidade , Irritantes/toxicidade , Mecloretamina/toxicidade , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Pelados , PPAR alfa/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Pele/metabolismo
12.
Exp Mol Pathol ; 100(3): 522-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27189522

RESUMO

Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20µmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4µmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures.


Assuntos
Anti-Inflamatórios/farmacologia , Indometacina/análogos & derivados , Mecloretamina/toxicidade , Pró-Fármacos/farmacologia , Pele/efeitos dos fármacos , Alquilantes/toxicidade , Animais , Anti-Inflamatórios/química , Antagonistas Colinérgicos/química , Antagonistas Colinérgicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Dano ao DNA , Feminino , Histonas/metabolismo , Imuno-Histoquímica , Indometacina/química , Indometacina/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Pró-Fármacos/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pele/lesões , Pele/patologia , Fatores de Tempo , Cicatrização/efeitos dos fármacos
13.
Toxicol Appl Pharmacol ; 280(2): 236-44, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127551

RESUMO

Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antagonistas Colinérgicos/uso terapêutico , Gás de Mostarda/toxicidade , Dermatopatias/tratamento farmacológico , Animais , Ciclo-Oxigenase 2 , Antígeno Ki-67/análise , Masculino , Metaloproteinase 9 da Matriz , Camundongos , Camundongos Pelados , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/patologia , Cicatrização/efeitos dos fármacos
14.
Exp Mol Pathol ; 96(3): 316-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24662110

RESUMO

Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing. The dorsal skin of hairless mice was treated with saturated SM vapor. One to seven days later, epithelial cell karyolysis within the hair root sheath, infundibulum and isthmus was apparent, along with reduced numbers of sebocytes. Increased numbers of utriculi, some with connections to the skin surface, and engorged dermal cysts were also evident. This was associated with marked changes in expression of markers of DNA damage (phospho-H2A.X), apoptosis (cleaved caspase-3), and wound healing (FGFR2 and galectin-3) throughout pilosebaceous units. Conversely, fatty acid synthase and galectin-3 were down-regulated in sebocytes after SM. Decreased numbers of hair follicles and increased numbers of inflammatory cells surrounding the utriculi and follicular cysts were noted within the wound 3-7 days post-SM exposure. Expression of phospho-H2A.X, cleaved caspase-3, FGFR2 and galectin-3 was decreased in dysplastic follicular epidermis. Fourteen days after SM, engorged follicular cysts which expressed galectin-3 were noted within hyperplastic epidermis. Galectin-3 was also expressed in basal keratinocytes and in the first few layers of suprabasal keratinocytes in neoepidermis formed during wound healing indicating that this lectin is important in the early stages of keratinocyte differentiation. These data indicate that hair follicles and sebaceous glands are targets for SM in the skin.


Assuntos
Folículo Piloso/efeitos dos fármacos , Gás de Mostarda/toxicidade , Glândulas Sebáceas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Galectina 3/genética , Galectina 3/metabolismo , Folículo Piloso/patologia , Histonas/genética , Histonas/metabolismo , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Pelados , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Glândulas Sebáceas/patologia , Pele/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos
15.
Toxicol Sci ; 200(2): 299-311, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749002

RESUMO

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.


Assuntos
Modelos Animais de Doenças , Endotoxemia , Lipopolissacarídeos , Estresse Oxidativo , Ozônio , Animais , Ozônio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Inflamação/induzido quimicamente , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo
16.
Exp Mol Pathol ; 94(1): 216-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000425

RESUMO

Exposure to excessive quantities of bacterial-derived lipopolysaccharide (LPS) is associated with injury to the lung and the liver. Macrophages are thought to play a key role in the pathogenic response to LPS by releasing proinflammatory/cytotoxic mediators. Macrophage responses to LPS are mediated in large part by toll-like receptor 4 (TLR4). In the present studies we used C3H/HeJ mice, which possess a mutated nonfunctional TLR4, to examine its role in lung and liver macrophage responses to acute endotoxemia induced by LPS administration. Treatment of control C3H/HeOuJ mice with LPS (3 mg/ml, i.p.) was associated with a significant increase in the number of macrophages in both the lung and the liver. This was most prominent after 48 h, and was preceded by expression of proliferating cell nuclear antigen (PCNA), suggesting that macrophage proliferation contributes to the response. In liver, but not lung macrophages, LPS administration resulted in a rapid (within 3 h) increase in mRNA expression of Mn superoxide dismutase (SOD) and heme oxygenase-1 (HO-1), key enzymes in antioxidant defense. In contrast, HO-1 protein expression decreased 3 h after LPS administration in liver macrophages, while in lung macrophages it increased. mRNA expression of enzymes mediating the biosynthesis of eicosanoids, including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), but not 12/15-lipoxygenase (LOX), was upregulated in liver macrophages 3-24 h after LPS, with no effect on lung macrophages. However, COX-2 protein expression increased in both cell types. Loss of functional TLR4 significantly blunted the effects of LPS. Thus, no major changes were observed after LPS administration in the number of lung and liver macrophages recovered from TLR4 mutant mice, or on expression of PCNA. Increases in HO-1, MnSOD, COX-2 and PGES-1 mRNA expression in liver macrophages were also reduced in these mice. Conversely, in lung macrophages, loss of functional TLR4 resulted in increased expression of COX-2 protein and 12/15-LOX mRNA. These results demonstrate distinct lung and liver macrophage responses to acute endotoxemia are mediated, in part, by functional TLR4.


Assuntos
Endotoxemia/imunologia , Células de Kupffer/imunologia , Macrófagos Alveolares/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Araquidonato 12-Lipoxigenase/biossíntese , Araquidonato 15-Lipoxigenase/biossíntese , Ciclo-Oxigenase 2/biossíntese , Ativação Enzimática , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Oxirredutases Intramoleculares/biossíntese , Células de Kupffer/metabolismo , Lipopolissacarídeos , Fígado/imunologia , Pulmão/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Antígeno Nuclear de Célula em Proliferação/biossíntese , Prostaglandina-E Sintases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/genética , Regulação para Cima
17.
Disaster Med Public Health Prep ; 17: e551, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849329

RESUMO

Sulfur mustard (SM) is a threat to both civilian and military populations. Human skin is highly sensitive to SM, causing delayed erythema, edema, and inflammatory cell infiltration, followed by the appearance of large fluid-filled blisters. Skin wound repair is prolonged following blistering, which can result in impaired barrier function. Key to understanding the action of SM in the skin is the development of animal models that have a pathophysiology comparable to humans such that quantitative assessments of therapeutic drugs efficacy can be assessed. Two animal models, hairless guinea pigs and swine, are preferred to evaluate dermal products because their skin is morphologically similar to human skin. In these animal models, SM induces degradation of epidermal and dermal tissues but does not induce overt blistering, only microblistering. Mechanisms of wound healing are distinct in these animal models. Whereas a guinea pig heals by contraction, swine skin, like humans, heals by re-epithelialization. Mice, rats, and rabbits are also used for SM mechanistic studies. However, healing is also mediated by contraction; moreover, only microblistering is observed. Improvements in animal models are essential for the development of therapeutics to mitigate toxicity resulting from dermal exposure to SM.


Assuntos
Gás de Mostarda , Humanos , Camundongos , Ratos , Animais , Cobaias , Coelhos , Gás de Mostarda/toxicidade , Pele
18.
Exp Mol Pathol ; 91(2): 515-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21672537

RESUMO

Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control. Histopathological changes, inflammatory markers and DNA damage were analyzed 1-14 days later. After 1 day, SM caused epidermal thinning, stratum corneum shedding, basal cell karyolysis, hemorrhage and macrophage and neutrophil accumulation in the dermis. Cleaved caspase-3 and phosphorylated histone 2A.X (phospho-H2A.X), markers of apoptosis and DNA damage, respectively, were increased whereas proliferating cell nuclear antigen (PCNA) was down-regulated after SM exposure. By 3 days, epithelial cell hypertrophy, edema, parakeratosis and loss of epidermal structures were noted. Enzymes generating pro-inflammatory mediators including myeloperoxidase and cyclooxygenase-2 were upregulated. After 7 days, keratin-10, a differentiation marker, was evident in the stratum corneum. This was associated with an underlying eschar, as neoepidermis began to migrate at the wound edges. Trichrome staining revealed increased collagen deposition in the dermis. PCNA expression in the epidermis was correlated with hyperplasia, hyperkeratosis, and parakeratosis. By 14 days, there was epidermal regeneration with extensive hyperplasia, and reduced expression of cleaved caspase-3, cyclooxygenase-2 and phospho-H2A.X. These findings are consistent with the pathophysiology of SM-induced skin injury in humans suggesting that the hairless mouse can be used to investigate the dermatoxicity of vesicants and the potential efficacy of countermeasures.


Assuntos
Dano ao DNA , Inflamação/patologia , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Pele/patologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Caspase 3/metabolismo , Degranulação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Histonas/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Queratinas/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Mastócitos/fisiologia , Camundongos , Camundongos Pelados , Peroxidase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pele/enzimologia , Coloração e Rotulagem , Cicatrização/efeitos dos fármacos
19.
Toxicol Appl Pharmacol ; 245(3): 352-60, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20382172

RESUMO

Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 microM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A(4) (LTA(4)) hydrolase and leukotriene C(4) (LTC(4)) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA(4) hydrolase and LTC(4) synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.


Assuntos
Antioxidantes/metabolismo , Substâncias para a Guerra Química/toxicidade , Mediadores da Inflamação/metabolismo , Inflamação/induzido quimicamente , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Gás de Mostarda/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Eicosanoides/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/enzimologia , Inflamação/imunologia , Queratinócitos/enzimologia , Queratinócitos/imunologia , Camundongos , Gás de Mostarda/toxicidade , Carbonilação Proteica/efeitos dos fármacos
20.
Toxicol Appl Pharmacol ; 245(1): 36-46, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20100502

RESUMO

Caveolin-1 (Cav-1) is a membrane scaffolding protein, which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1(-/-)) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1(-/-) mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1(-/-) mice is not due to alterations in antioxidant defense. In wild-type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1beta, and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1(-/-) mice. Although expression of tumor necrosis factor-alpha, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1(-/-) mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed, which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury.


Assuntos
Acetaminofen/toxicidade , Caveolina 1/fisiologia , Fígado/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Caveolina 1/genética , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1/metabolismo , Interleucina-10/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA