Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400114, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971967

RESUMO

Identification of neoantigens, derived from somatic DNA alterations, emerges as a promising strategy for cancer immunotherapies. However, not all somatic mutations result in immunogenicity, hence, efficient tools to predict the immunogenicity of neoepitopes are needed. A pipeline is presented that provides a comprehensive solution for the identification of neoepitopes based on genomic sequencing data. The pipeline consists of a data pre-processing step and three machine learning predictive steps. The pre-processing step analyzes genomic data for different types of alterations, produces a list of all possible antigens, and determines the human leukocyte antigen (HLA) type and T-cell receptor (TCR) repertoire. The first predictive step performs a classification into antigens and neoantigens, selecting neoantigens for further consideration. The next step predicts the strength of binding between neoantigens and available major histocompatibility complexes of class I (MHC-I). The third step is engaged to predict the likelihood of inducing an immune response. Neoepitopes satisfying all three predictive stages are assumed to be potent candidates to ensure immunogenicity. The predictive pipeline is used in two regimes: selecting neoantigens from patients' sequencing data and generating novel neoantigen candidates. Two different techniques - Monte Carlo and Reinforcement Learning - are implemented to facilitate the generative regime.

2.
Toxins (Basel) ; 10(3)2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510600

RESUMO

Flavonoids are a group of hydroxylated polyphenolic compounds widely distributed in the plant kingdom. Biosynthesis of these compounds involves type III PKSs, whose presence has been recently predicted in some fungal species through genome sequencing efforts. In this study, for the first time it was found that Fusaria produce flavonoids on solid YES medium. Naringenin, as the central precursor of all flavonoids, was produced at highest quantities, followed by quercetin, kaempferol, apigenin and luteolin. In plants, flavonoids are involved in the protection of cereals to a wide range of stresses, including host defense against Fusaria. Under in vitro conditions, strains of Fusarium culmorum and F. graminearum sensu stricto were incubated at levels of flavonoids close to amounts produced by cereals in response to fungal infection. The amounts of exogenous naringenin, apigenin, luteolin, kaempferol and quercetin were reduced and converted by fungi to the other flavonoid derivatives. Treatment of fungi with naringenin derivatives led to the inhibition of naringenin production. Correspondingly, the production of fungal-derived phenolic acids decreased in flavonoid treated samples, although this effect appeared to be dependent on the strain, flavonoid molecule and its concentration. Fusaria showed high variability in trichothecene production in response to flavonoids. With emphasis on quercetin, mycotoxin accumulation in the media was significantly decreased by luteolin, kaempferol, naringenin and apigenin. However, in some cases, apigenin led to the increase of mycotoxin content in the media. Gene expression experiments of Tri genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of mycotoxin production by flavonoids occurred at the transcriptional level. However, the changes in Tri transcript levels were not significant in most apigenin and all kaempferol-treated cultures. In this study, a link was established between antioxidant and antiradical properties of flavonoids and their effects on fungi.


Assuntos
Flavonoides/metabolismo , Flavonoides/farmacologia , Fusarium/efeitos dos fármacos , Tricotecenos/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Tricotecenos/genética
3.
Toxins (Basel) ; 10(8)2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103473

RESUMO

Fusarium head blight (FHB) of cereals is the major head disease negatively affecting grain production worldwide. In 2016 and 2017, serious outbreaks of FHB occurred in wheat crops in Poland. In this study, we characterized the diversity of Fusaria responsible for these epidemics using TaqMan assays. From a panel of 463 field isolates collected from wheat, four Fusarium species were identified. The predominant species were F. graminearum s.s. (81%) and, to a lesser extent, F. avenaceum (15%). The emergence of the 15ADON genotype was found ranging from 83% to 87% of the total trichothecene genotypes isolated in 2016 and 2017, respectively. Our results indicate two dramatic shifts within fungal field populations in Poland. The first shift is associated with the displacement of F. culmorum by F. graminearum s.s. The second shift resulted from a loss of nivalenol genotypes. We suggest that an emerging prevalence of F. graminearum s.s. may be linked to boosted maize production, which has increased substantially over the last decade in Poland. To detect variation within Tri core clusters, we compared sequence data from randomly selected field isolates with a panel of strains from geographically diverse origins. We found that the newly emerged 15ADON genotypes do not exhibit a specific pattern of polymorphism enabling their clear differentiation from the other European strains.


Assuntos
Fusarium/genética , Tricotecenos/genética , Triticum/microbiologia , DNA Fúngico/genética , Monitoramento Ambiental , Fusarium/isolamento & purificação , Genótipo , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA