RESUMO
Frequent mumps outbreaks in vaccinated populations and the occurrence of neurological complications (e.g., aseptic meningitis or encephalitis) in patients with mumps indicate the need for the development of more efficient vaccines as well as specific antiviral therapies. RNA viruses are genetically highly heterogeneous populations that exist on the edge of an error threshold, such that additional increases in mutational burden can lead to extinction of the virus population. Deliberate modulation of their natural mutation rate is being exploited as an antiviral strategy and a possibility for rational vaccine design. The aim of this study was to examine the ability of ribavirin, a broad-spectrum antiviral agent, to introduce mutations in the mumps virus (MuV) genome and to investigate if resistance develops during long-term in vitro exposure to ribavirin. An increase in MuV population heterogeneity in the presence of ribavirin has been observed after one passage in cell culture, as well as a bias toward C-to-U and G-to-A transitions, which have previously been defined as ribavirin-related. At higher ribavirin concentration, MuV loses its infectivity during serial passaging and does not recover. At low ribavirin concentration, serial passaging leads to a more significant increase in population diversity and a stronger bias towards ribavirin-related transitions, independently of viral strain or cell culture. In these conditions, the virus retains its initial growth capacity, without development of resistance at a whole-virus population level.
Assuntos
Antivirais/farmacologia , Vírus da Caxumba/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Chlorocebus aethiops , Farmacorresistência Viral , Variação Genética/efeitos dos fármacos , Vírus da Caxumba/genética , Vírus da Caxumba/fisiologia , Mutação , Células Vero , Replicação ViralRESUMO
Recombinant mumps viruses (MuVs) based on established vaccine strains represent attractive vector candidates as they have known track records for high efficacy and the viral genome does not integrate in the host cells. We developed a rescue system based on the consensus sequence of the L-Zagreb vaccine and generated seven different recombinant MuVs by (a) insertion of one or two additional transcription units (ATUs), (b) lengthening of a noncoding region to the extent that the longest noncoding region in MuV genome is created, or (c) replacement of original L-Zagreb sequences with sequences rich in CG and AT dinucleotides. All viruses were successfully rescued and faithfully matched sequences of input plasmids. In primary rescued stocks, low percentages of heterogeneous positions were found (maximum 0.12%) and substitutions were predominantly obtained in minor variants, with maximally four substitutions seen in consensus. ATUs did not accumulate more mutations than the natural MuV genes. Six substitutions characteristic for recombinant viruses generated in our system were defined, as they repetitively occurred during rescue processes. In subsequent passaging of primary rescue stocks in Vero cells, different inconsistencies within quasispecies structures were observed. In order to assure that unwanted mutations did not emerge and accumulate, sub-consensus variability should be closely monitored. As we show for Pro408Leu mutation in L gene and a stop codon in one of ATUs, positively selected variants can rise to frequencies over 85% in only few passages.
Assuntos
Vírus da Caxumba/genética , Animais , Chlorocebus aethiops , Genoma Viral , Vírus da Caxumba/fisiologia , Mutação , Plasmídeos , Recombinação Genética , Células VeroRESUMO
Human bocavirus (HBoV) 1 is considered an important respiratory pathogen, while the role of HBoV2-4 in clinical disease remains somewhat controversial. Since, they are characterized by a rapid evolution, worldwide surveillance of HBoVs' genetics is necessary. This study explored the prevalence of HBoV genotypes in pediatric patients with respiratory tract infection in Croatia and studied their phylogeny. Using multiplex PCR for 15 respiratory viruses, we investigated 957 respiratory samples of children up to 18 years of age with respiratory tract infection obtained from May 2017 to March 2021 at two different hospitals in Croatia. Amplification of HBoV near-complete genome or three overlapping fragments was performed, sequenced, and their phylogenetic inferences constructed. HBoV was detected in 7.6% children with a median age of 1.36 years. Co-infection was observed in 82.2% samples. Sequencing was successfully performed on 29 HBoV positive samples, and all belonged to HBoV1. Croatian HBoV1 sequences are closely related to strains isolated worldwide, and no phylogenetic grouping based on mono- or co-infection cases or year of isolation was observed. Calculated rates of evolution for HBoV1 were 10-4 and 10-5 substitutions per site and year. Recombination was not detected among sequences from this study.