Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409127

RESUMO

Signalling activities are tightly regulated to control cellular responses. Heparan sulfate proteoglycans (HSPGs) at the cell membrane and extracellular matrix regulate ligand availability and interaction with a range of key receptors. SULF1 and SULF2 enzymes modify HSPG sulfation by removing 6-O sulfates to regulate cell signalling but are considered functionally identical. Our in vitro mRNA and protein analyses of two diverse human endothelial cell lines, however, highlight their markedly distinct regulatory roles of maintaining specific HSPG sulfation patterns through feedback regulation of HS 6-O transferase (HS6ST) activities and highly divergent roles in vascular endothelial growth factor (VEGF) and Transforming growth factor ß (TGFß) cell signalling activities. Unlike Sulf2, Sulf1 over-expression in dermal microvascular HMec1 cells promotes TGFß and VEGF cell signalling by simultaneously upregulating HS6ST1 activity. In contrast, Sulf1 over-expression in venous ea926 cells has the opposite effect as it attenuates both TGFß and VEGF signalling while Sulf2 over-expression maintains the control phenotype. Exposure of these cells to VEGF-A, TGFß1, and their inhibitors further highlights their endothelial cell type-specific responses and integral growth factor interactions to regulate cell signalling and selective feedback regulation of HSPG sulfation that additionally exploits alternative Sulf2 RNA-splicing to regulate net VEGF-A and TGFß cell signalling activities.


Assuntos
Sulfotransferases , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Proteoglicanas de Heparan Sulfato , Sulfotransferases/genética , Sulfotransferases/metabolismo , Fator de Crescimento Transformador beta , Fator A de Crescimento do Endotélio Vascular/genética
2.
Exp Cell Res ; 364(1): 16-27, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360432

RESUMO

This study demonstrates highly dynamic spatial and temporal pattern of SULF1/SULF2 expression in a number of neuronal cell types growing in normal culture medium that included their transient nuclear mobilisation. Their nuclear translocation became particularly apparent during cell proliferation as both SULF1/SULF2 demonstrated not only cell membrane associated expression, their known site of function but also transient nuclear mobilisation during nuclear cell division. Nuclear localisation was apparent not only by immunocytochemical staining but also confirmed by immunoblotting staining of isolated nuclear fractions of C6, U87 and N2A cells. Immunocytochemical analysis demonstrated rapid nuclear exit of both SULF1/SULF2 following cell division that was slightly delayed but not blocked in a fraction of the polyploid cells observed in C6 cells. The overexpression of both Sulf1 and Sulf2 genes in C6 and U87 cells markedly promoted in vitro growth of these cells accompanied by nuclear mobilisation while inhibition of both these genes inhibited cell proliferation with little or no nuclear SULF1/SULF2 mobilisation. SULF1/SULF2 activity in these cells thus demonstrated a clear co-ordination of extracellular cell signalling with nuclear events related to cell proliferation.


Assuntos
Ciclo Celular , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Glioma/metabolismo , Neuroblastoma/metabolismo , Sulfotransferases/metabolismo , Núcleo Celular/genética , Células Cultivadas , Glioma/patologia , Humanos , Neuroblastoma/patologia , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Sulfatases
3.
Sci Rep ; 11(1): 22424, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789772

RESUMO

Sulf1/Sulf2 genes are highly expressed during early fetal cardiovascular development but down-regulated during later stages correlating with a number of cell signalling pathways in a positive or a negative manner. Immunocytochemical analysis confirmed SULF1/SULF2 expression not only in endothelial cell lining of blood vessels but also in the developing cardiomyocytes but not in the adult cardiomyocytes despite persisting at reduced levels in the adult endothelial cells. The levels of both SULFs in adult ischemic human hearts and in murine hearts following coronary occlusion increased in endothelial lining of some regional blood vessels but with little or no detection in the cardiomyocytes. Unlike the normal adult heart, the levels of SULF1 and SULF2 were markedly increased in the adult canine right-atrial haemangiosarcoma correlating with increased TGFß cell signalling. Cell signalling relationship to ischaemia was further confirmed by in vitro hypoxia of HMec1 endothelial cells demonstrating dynamic changes in not only vegf and its receptors but also sulfotransferases and Sulf1 & Sulf2 levels. In vitro hypoxia of HMec1 cells also confirmed earlier up-regulation of TGFß cell signalling revealed by Smad2, Smad3, ALK5 and TGFß1 changes and later down-regulation correlating with Sulf1 but not Sulf2 highlighting Sulf1/Sulf2 differences in endothelial cells under hypoxia.


Assuntos
Coração/embriologia , Infarto do Miocárdio/metabolismo , Transdução de Sinais , Sulfatases/metabolismo , Sulfotransferases/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Cães , Células Endoteliais/metabolismo , Humanos , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
PLoS One ; 13(10): e0205108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281646

RESUMO

Understanding the molecular pathways regulating cardiogenesis is crucial for the early diagnosis of heart diseases and improvement of cardiovascular disease. During normal mammalian cardiac development, collagen and calcium-binding EGF domain-1 (Ccbe1) is expressed in the first and second heart field progenitors as well as in the proepicardium, but its role in early cardiac commitment remains unknown. Here we demonstrate that during mouse embryonic stem cell (ESC) differentiation Ccbe1 is upregulated upon emergence of Isl1- and Nkx2.5- positive cardiac progenitors. Ccbe1 is markedly enriched in Isl1-positive cardiac progenitors isolated from ESCs differentiating in vitro or embryonic hearts developing in vivo. Disruption of Ccbe1 activity by shRNA knockdown or blockade with a neutralizing antibody results in impaired differentiation of embryonic stem cells along the cardiac mesoderm lineage resulting in a decreased expression of mature cardiomyocyte markers. In addition, knockdown of Ccbe1 leads to smaller embryoid bodies. Collectively, our results show that CCBE1 is essential for the commitment of cardiac mesoderm and consequently, for the formation of cardiac myocytes in differentiating mouse ESCs.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Supressoras de Tumor/deficiência , Animais , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Coração/embriologia , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , RNA Interferente Pequeno , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA