Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 16(10): 6485-6490, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27598653

RESUMO

V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bent, one-by-one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.

2.
Small ; 12(21): 2854-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27028413

RESUMO

A Au-silica Janus particle is elevated along the laser beam axis in an optical trap. The propulsion mechanism is based on the local temperature gradient created around the particle due to the photothermal conversion of the gold-coated hemisphere. The height of the particle and its motion-direction are tuned by the nature and the concentration of the electrolytes in the medium.

3.
Nano Lett ; 14(5): 2914-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24754830

RESUMO

We report that plasmonic nanoantennas made by DNA origami can be used as reliable and efficient probes for surface-enhanced Raman spectroscopy (SERS). The nanoantenna is built up by two gold nanoparticles that are linked together by a three-layered DNA origami block at a separation distance of 6 nm in order to achieve plasmonic coupling and the formation of a plasmonic "hot spot". The plasmonic properties of the hybrid structure are optically characterized by dark-field imaging and polarization-dependent spectroscopy. SERS measurements on molecules that are embedded in the DNA origami that bridges the nanoantenna gap were performed in order to demonstrate the excellent performance of these structures for enhancing spectroscopic signals. A strong enhancement of the Raman signal was recorded from measurements on single hot spots compared to measurements in bulk. Finally, we show that the laser polarization with respect to the dimer orientation has a strong impact on the SERS performance.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Lasers , Nanotecnologia , Polímeros/química , Propriedades de Superfície
4.
Opt Express ; 22(7): 8226-33, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718198

RESUMO

We experimentally and theoretically explore near-field nanopatterning obtained by irradiation of hexagonal monolayers of micron-sized polystyrene spheres on photosensitive Ge(2)Sb(5)Te(5) (GST) films. The imprinted patterns are strongly sensitive to the illumination conditions, as well as the size of the spheres and the orientation of the monolayer, which we change to demonstrate control over the resulting structures. We show that the presence of multiple scattering effects cannot be neglected to describe the resulting pattern. The experimental patterns imprinted are shown to be robust to small displacements and structural defects of the monolayer. Our method enables the design and experimental verification of patterns with multiple focii per particle and complex shapes, which can be directly implemented for large scale fabrication on different substrates.

5.
Eur Phys J C Part Fields ; 84(2): 170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050375

RESUMO

In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.

6.
Opt Express ; 20(20): 22063-78, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037356

RESUMO

When exposing small particles on a substrate to a light plane wave, the scattered optical near field is spatially modulated and highly complex. We show, for the particular case of dielectric microspheres, that it is possible to image these optical near-field distributions in a quantitative way. By placing a single microsphere on a thin film of the photosensitive phase change material Ge(2)Sb(5)Te(5) and exposing it to a single short laser pulse, the spatial intensity modulation of the near field is imprinted into the film as a pattern of different material phases. The resulting patterns are investigated by using optical as well as high-resolution scanning electron microscopy. Quantitative information on the local optical near field at each location is obtained by calibrating the material response to pulsed laser irradiation. We discuss the influence of polarization and angle of incidence of the laser beam as well as particle size on the field distribution. The experimental results are in good quantitative agreement with a model based on a rigorous solution of Maxwell's equations. Our results have potential application to near-field optical lithography and experimental determination of near fields in complex nanostructures.


Assuntos
Luz , Modelos Teóricos , Imagem Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Espalhamento de Radiação
7.
ACS Photonics ; 2(4): 491-496, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25950013

RESUMO

In this article, we report how Janus particles, composed of a silica sphere with a gold half-shell, can be not only stably trapped by optical tweezers but also displaced controllably along the axis of the laser beam through a complex interplay between optical and thermal forces. Scattering forces orient the asymmetric particle, while strong absorption on the metal side induces a thermal gradient, resulting in particle motion. An increase in the laser power leads to an upward motion of the particle, while a decrease leads to a downward motion. We study this reversible axial displacement, including a hysteretic jump in the particle position that is a result of the complex pattern of a tightly focused laser beam structure above the focal plane. As a first application we simultaneously trap a spherical gold nanoparticle and show that we can control the distance between the two particles inside the trap. This photonic micron-scale "elevator" is a promising tool for thermal force studies, remote sensing, and optical and thermal micromanipulation experiments.

8.
ACS Appl Mater Interfaces ; 6(12): 8947-52, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24896979

RESUMO

We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas Metálicas/química , Análise Espectral Raman , Ouro/química , Lipídeos/química , Membranas/química , Ressonância de Plasmônio de Superfície
9.
Beilstein J Nanotechnol ; 4: 501-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062976

RESUMO

In this work we analyze the ablation dynamics of crystalline Si in the intense near field generated by a small dielectric particle located at the material surface when being irradiated with an infrared femtosecond laser pulse (800 nm, 120 fs). The presence of the particle (7.9 µm diameter) leads to a strong local enhancement (ca. 40 times) of the incoming intensity of the pulse. The transient optical response of the material has been analyzed by means of fs-resolved optical microscopy in reflection configuration over a time span from 0.1 ps to about 1 ns. Characteristic phenomena like electron plasma formation, ultrafast melting and ablation, along with their characteristic time scales are observed in the region surrounding the particle. The use of a time resolved imaging technique allows us recording simultaneously the material response at ordinary and large peak power densities enabling a direct comparison between both scenarios. The time resolved images of near field exposed regions are consistent with a remarkable temporal shift of the ablation onset which occurs in the sub-picosend regime, from about 500 to 800 fs after excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA