Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Mater ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965405

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.

2.
Am J Physiol Cell Physiol ; 325(2): C519-C537, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399500

RESUMO

V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.


Assuntos
Processamento Alternativo , Versicanas , Matriz Extracelular , Isoformas de Proteínas/genética , Versicanas/genética , Humanos
3.
Diabetologia ; 64(1): 152-158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125521

RESUMO

AIMS/HYPOTHESIS: IL-2 injections are a promising therapy for autoimmune type 1 diabetes but the short half-life of this cytokine in vivo limits effective tissue exposure and necessitates frequent injections. Here we have investigated whether an injectable hydrogel could be used to promote prolonged IL-2 release in vivo. METHODS: Capitalising on the IL-2-binding capabilities of heparin, an injectable hydrogel incorporating clinical-grade heparin, collagen and hyaluronan polymers was used to deliver IL-2. The IL-2-release kinetics and in vivo stability of this material were examined. The ability of soluble IL-2 vs hydrogel-mediated IL-2 injections to prevent autoimmune diabetes in the NOD mouse model of type 1 diabetes were compared. RESULTS: We observed in vitro that the hydrogel released IL-2 over a 12-day time frame and that injected hydrogel likewise persisted 12 days in vivo. Notably, heparin binding potentiates the activity of IL-2 and enhances IL-2- and TGFß-mediated expansion of forkhead box P3-positive regulatory T cells (FOXP3+ Tregs). Finally, weekly administration of IL-2-containing hydrogel partially prevented autoimmune diabetes while injections of soluble IL-2 did not. CONCLUSIONS/INTERPRETATION: Hydrogel delivery may reduce the number of injections required in IL-2 treatment protocols for autoimmune diabetes. Graphical abstract.


Assuntos
Doenças Autoimunes/prevenção & controle , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Hidrogéis/administração & dosagem , Interleucina-2/administração & dosagem , Animais , Heparina/administração & dosagem , Injeções , Células Secretoras de Insulina/imunologia , Interleucina-2/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Solubilidade , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia
4.
J Biol Chem ; 294(19): 7864-7877, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30914479

RESUMO

4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Hialurônico/biossíntese , Himecromona/análogos & derivados , Linfócitos T Reguladores/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Himecromona/farmacologia , Camundongos , Linfócitos T Reguladores/patologia
5.
J Biol Chem ; 293(2): 567-578, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183997

RESUMO

We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel "bed of nails"-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.


Assuntos
Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Animais , Doenças Autoimunes/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Hidrogéis , Himecromona/farmacologia , Camundongos , Microscopia de Força Atômica
6.
J Biol Chem ; 292(1): 51-63, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27895126

RESUMO

Viral infection is an exacerbating factor contributing to chronic airway diseases, such as asthma, via mechanisms that are still unclear. Polyinosine-polycytidylic acid (poly(I:C)), a Toll-like receptor 3 (TLR3) agonist used as a mimetic to study viral infection, has been shown to elicit inflammatory responses in lungs and to exacerbate pulmonary allergic reactions in animal models. Previously, we have shown that poly(I:C) stimulates lung fibroblasts to accumulate an extracellular matrix (ECM), enriched in hyaluronan (HA) and its binding partner versican, which promotes monocyte adhesion. In the current study, we aimed to determine the in vivo role of versican in mediating inflammatory responses in poly(I:C)-induced lung inflammation using a tamoxifen-inducible versican-deficient mouse model (Vcan-/- mice). In C57Bl/6 mice, poly(I:C) instillation significantly increased accumulation of versican and HA, especially in the perivascular and peribronchial regions, which were enriched in infiltrating leukocytes. In contrast, versican-deficient (Vcan-/-) lungs did not exhibit increases in versican or HA in these regions and had strikingly reduced numbers of leukocytes in the bronchoalveolar lavage fluid and lower expression of inflammatory chemokines and cytokines. Poly(I:C) stimulation of lung fibroblasts isolated from control mice generated HA-enriched cable structures in the ECM, providing a substrate for monocytic cells in vitro, whereas lung fibroblasts from Vcan-/- mice did not. Moreover, increases in proinflammatory cytokine expression were also greatly attenuated in the Vcan-/- lung fibroblasts. These findings provide strong evidence that versican is a critical inflammatory mediator during poly(I:C)-induced acute lung injury and, in association with HA, generates an ECM that promotes leukocyte infiltration and adhesion.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Indutores de Interferon/toxicidade , Pneumonia/prevenção & controle , Poli I-C/toxicidade , Versicanas/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia
7.
Am J Respir Cell Mol Biol ; 56(1): 109-120, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598620

RESUMO

The extracellular matrix in asthmatic lungs contains abundant low-molecular-weight hyaluronan, and this is known to promote antigen presentation and allergic responses. Conversely, high-molecular-weight hyaluronan (HMW-HA), typical of uninflamed tissues, is known to suppress inflammation. We investigated whether HMW-HA can be adapted to promote tolerance to airway allergens. HMW-HA was thiolated to prevent its catabolism and was tethered to allergens via thiol linkages. This platform, which we call "XHA," delivers antigenic payloads in the context of antiinflammatory costimulation. Allergen/XHA was administered intranasally to mice that had been sensitized previously to these allergens. XHA prevents allergic airway inflammation in mice sensitized previously to either ovalbumin or cockroach proteins. Allergen/XHA treatment reduced inflammatory cell counts, airway hyperresponsiveness, allergen-specific IgE, and T helper type 2 cell cytokine production in comparison with allergen alone. These effects were allergen specific and IL-10 dependent. They were durable for weeks after the last challenge, providing a substantial advantage over the current desensitization protocols. Mechanistically, XHA promoted CD44-dependent inhibition of nuclear factor-κB signaling, diminished dendritic cell maturation, and reduced the induction of allergen-specific CD4 T-helper responses. XHA and other potential strategies that target CD44 are promising alternatives for the treatment of asthma and allergic sinusitis.


Assuntos
Alérgenos/imunologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/metabolismo , Células Dendríticas/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Imunização , Interleucina-10 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peso Molecular , NF-kappa B/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/fisiopatologia , Transporte Proteico/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
8.
Microbiology (Reading) ; 162(9): 1583-1594, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27473221

RESUMO

Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.


Assuntos
Aspergillus fumigatus/fisiologia , Bacteriófagos/fisiologia , Ferro/metabolismo , Pseudomonas aeruginosa/virologia , Aspergilose/microbiologia , Aspergillus fumigatus/virologia , Biofilmes , Humanos
9.
Viruses ; 16(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275975

RESUMO

BACKGROUND: The inovirus Pf4 is a lysogenic bacteriophage of Pseudomonas aeruginosa (Pa). People with Cystic Fibrosis (pwCF) experience chronic airway infection with Pa and a significant proportion have high numbers of Pf4 in their airway secretions. Given the known severe damage in the airways of Pa-infected pwCF, we hypothesized a high Pf4 burden can affect airway healing and inflammatory responses. In the airway, basal epithelial cells (BCs) are a multipotent stem cell population critical to epithelium homeostasis and repair. We sought to investigate the transcriptional responses of BCs under conditions that emulate infection with Pa and exposure to high Pf4 burden. METHODS: Primary BCs isolated from pwCF and wild-type (WT) donors were cultured in vitro and exposed to Pf4 or bacterial Lipopolysaccharide (LPS) followed by transcriptomic and functional assays. RESULTS: We found that BCs internalized Pf4 and this elicits a strong antiviral response as well as neutrophil chemokine production. Further, we found that BCs that take up Pf4 demonstrate defective migration and proliferation. CONCLUSIONS: Our findings are highly suggestive of Pf4 playing a role in the pathogenicity of Pa in the airways. These findings provide additional evidence for the ability of inoviruses to interact with mammalian cells and disrupt cell function.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Animais , Humanos , Sistema Respiratório , Células Epiteliais , Epitélio , Proliferação de Células , Antivirais , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/microbiologia , Mamíferos
10.
Nat Commun ; 15(1): 1564, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378682

RESUMO

Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Interleucina-2/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo
11.
Biol Chem ; 394(6): 753-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23362192

RESUMO

Cyclooxygenase 1b (COX-1b) is a splice variant of COX-1, containing a retained intron 1 within the signal peptide sequence. COX-1b mRNA is found in many species, but the existence of a functionally active protein, which is possibly related to different species-dependent lengths of intron 1, is controversially discussed. The human intron 1 comprises 94 bp, and the resulting frameshift at the intron 1-exon 2 junction creates a premature stop codon. Nevertheless, full-length human COX-1b protein expression, including translated intron 1 and the signal peptide, has been reported and was explained by a frameshift repair. In this study, the fate of COX-1b mRNA in a human overexpression system is analyzed. Independent of the hypothetical frameshift repair mechanism, the splicing of the COX-1b intron 1, resulting in COX-1 mRNA and removal of the signal peptide during protein maturation, with subsequent generation of a COX-1 protein is demonstrated.


Assuntos
Prostaglandina-Endoperóxido Sintases/biossíntese , Prostaglandina-Endoperóxido Sintases/genética , Biossíntese de Proteínas , Sequência de Aminoácidos , Sequência de Bases , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , DNA Complementar/genética , Éxons/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Íntrons/genética , Fígado/enzimologia , Espectrometria de Massas , Dados de Sequência Molecular , Prostaglandina-Endoperóxido Sintases/química , Sinais Direcionadores de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Estômago/enzimologia
12.
Matrix Biol ; 116: 49-66, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750167

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Ácido Hialurônico , Inflamação/patologia , Síndrome de COVID-19 Pós-Aguda
13.
Nat Microbiol ; 8(8): 1495-1507, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308590

RESUMO

Bacteriophages, viruses that infect bacteria, have great specificity for their bacterial hosts at the strain and species level. However, the relationship between the phageome and associated bacterial population dynamics is unclear. Here we generated a computational pipeline to identify sequences associated with bacteriophages and their bacterial hosts in cell-free DNA from plasma samples. Analysis of two independent cohorts, including a Stanford Cohort of 61 septic patients and 10 controls and the SeqStudy cohort of 224 septic patients and 167 controls, reveals a circulating phageome in the plasma of all sampled individuals. Moreover, infection is associated with overrepresentation of pathogen-specific phages, allowing for identification of bacterial pathogens. We find that information on phage diversity enables identification of the bacteria that produced these phages, including pathovariant strains of Escherichia coli. Phage sequences can likewise be used to distinguish between closely related bacterial species such as Staphylococcus aureus, a frequent pathogen, and coagulase-negative Staphylococcus, a frequent contaminant. Phage cell-free DNA may have utility in studying bacterial infections.


Assuntos
Bacteriófagos , Sepse , Humanos , Bacteriófagos/genética , Bactérias/genética , Escherichia coli/genética
14.
Front Cell Infect Microbiol ; 13: 1250339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965262

RESUMO

Pseudomonas aeruginosa is a major human pathogen, particularly effective at colonizing the airways of patients with cystic fibrosis. Bacteriophages are highly abundant at infection sites, but their impact on mammalian immunity remains unclear. We previously showed that Pf4, a temperate filamentous bacteriophage produced by P. aeruginosa, modifies the innate immune response to P. aeruginosa infections via TLR3 signaling, but the underlying mechanisms remained unclear. Notably, Pf4 is a single-stranded DNA and lysogenic phage, and its production does not typically result in lysis of its bacterial host. We identified previously that internalization of Pf4 by human or murine immune cells triggers maladaptive viral pattern recognition receptors and resulted in bacterial persistence based on the presence of phage RNA. We report now that Pf4 phage dampens inflammatory responses to bacterial endotoxin and that this is mediated in part via bacterial vesicles attached to phage particles. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and play a key role in host pathogen interaction. Recently, evidence has emerged that OMVs differentially package small RNAs. In this study, we show that Pf4 are decorated with OMVs that remain affixed to Pf4 despite of purification steps. These phages are endocytosed by human cells and delivered to endosomal vesicles. We demonstrate that short RNAs within the OMVs form hairpin structures that trigger TLR3-dependent type I interferon production and antagonize production of antibacterial cytokines and chemokines. In particular, Pf4 phages inhibit CXCL5, preventing efficient neutrophil chemotaxis in response to endotoxin. Moreover, blocking IFNAR or TLR3 signaling abrogates the effect of Pf4 bound to OMVs on macrophage activation. In a murine acute pneumonia model, mice treated with Pf4 associated with OMVs show significantly less neutrophil infiltration in BAL fluid than mice treated with purified Pf4. These changes in macrophage phenotype are functionally relevant: conditioned media from cells exposed to Pf4 decorated with OMVs are significantly less effective at inducing neutrophil migration in vitro and in vivo. These results suggest that Pf4 phages alter innate immunity to bacterial endotoxin and OMVs, potentially dampening inflammation at sites of bacterial colonization or infection.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Membrana Externa Bacteriana/metabolismo , Receptor 3 Toll-Like , Infecções por Pseudomonas/microbiologia , Endotoxinas , Mamíferos
15.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909502

RESUMO

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation does not result in ß-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.

16.
Matrix Biol ; 123: 34-47, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783236

RESUMO

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Ácido Hialurônico/metabolismo , Diabetes Mellitus Tipo 2/genética , Himecromona/farmacologia , Ilhotas Pancreáticas/metabolismo , Obesidade/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo
17.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909599

RESUMO

FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.

18.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499083

RESUMO

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Assuntos
Ácido Hialurônico , Himecromona , Administração Oral , COVID-19 , Europa (Continente) , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Himecromona/administração & dosagem , Himecromona/efeitos adversos
19.
Cell Rep Med ; 3(6): 100656, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732145

RESUMO

Chronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis. Rather, Pf impedes keratinocyte migration, which is essential for wound healing, through direct inhibition of CXCL1 signaling. In support of these findings, a prospective cohort study of 36 human patients with chronic Pa wound infections reveals that wounds infected with Pf-positive strains of Pa are more likely to progress in size compared with wounds infected with Pf-negative strains. Together, these data implicate Pf phage in the delayed wound healing associated with Pa infection through direct manipulation of mammalian cells. These findings suggest Pf may have potential as a biomarker and therapeutic target in chronic wounds.


Assuntos
Inovirus , Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Biofilmes , Humanos , Mamíferos , Estudos Prospectivos , Pseudomonas , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa , Cicatrização , Infecção dos Ferimentos/terapia
20.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730564

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Pulmão , SARS-CoV-2 , Escarro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA