Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
2.
Crit Care ; 26(1): 242, 2022 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-35934707

RESUMO

A hallmark of ARDS is progressive shrinking of the 'baby lung,' now referred to as the ventilator-induced lung injury (VILI) 'vortex.' Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered. A brief expiration prevents alveolar collapse, and an extended inspiration can recruit the atelectatic lung over hours. Time-controlled adaptive ventilation (TCAV) is a novel ventilator approach to achieve these goals, since it considers many of the temporal aspects of dynamic lung mechanics.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão , Respiração Artificial/efeitos adversos , Fenômenos Fisiológicos Respiratórios , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
3.
J Clin Monit Comput ; 36(5): 1461-1477, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910285

RESUMO

Measurement of respiratory impedance ([Formula: see text]) in intubated patients requires accurate compensation for pressure losses across the endotracheal tube (ETT). In this study, we compared time-domain (TD), frequency-domain (FD) and combined time-/frequency-domain (FT) methods for ETT compensation. We measured total impedance ([Formula: see text]) of a test lung in series with three different ETT sizes, as well as in three intubated porcine subjects. Pressure measurement at the distal end of the ETT was used to determine the true [Formula: see text]. For TD compensation, pressure distal to the ETT was obtained based on its resistive and inertial properties, and the corresponding [Formula: see text] was estimated. For FD compensation, impedance of the isolated ETT was obtained from oscillatory flow and pressure waveforms, and then subtracted from [Formula: see text]. For TF compensation, the nonlinear resistive properties of the ETT were subtracted from the proximal pressure measurement, from which the linear resistive and inertial ETT properties were removed in the frequency-domain to obtain [Formula: see text]. The relative root mean square error between the actual and estimated [Formula: see text] ([Formula: see text]) showed that TD compensation yielded the least accurate estimates of [Formula: see text] for the in vitro experiments, with small deviations observed at higher frequencies. The FD and TF compensations yielded estimates of [Formula: see text] with similar accuracies. For the porcine subjects, no significant differences were observed in [Formula: see text] across compensation methods. FD and TF compensation of the ETT may allow for accurate oscillometric estimates of [Formula: see text] in intubated subjects, while avoiding the difficulties associated with direct tracheal pressure measurement.


Assuntos
Intubação Intratraqueal , Traqueia , Animais , Impedância Elétrica , Humanos , Oscilometria , Taxa Respiratória , Suínos
4.
Eur Respir J ; 55(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31772002

RESUMO

Oscillometry (also known as the forced oscillation technique) measures the mechanical properties of the respiratory system (upper and intrathoracic airways, lung tissue and chest wall) during quiet tidal breathing, by the application of an oscillating pressure signal (input or forcing signal), most commonly at the mouth. With increased clinical and research use, it is critical that all technical details of the hardware design, signal processing and analyses, and testing protocols are transparent and clearly reported to allow standardisation, comparison and replication of clinical and research studies. Because of this need, an update of the 2003 European Respiratory Society (ERS) technical standards document was produced by an ERS task force of experts who are active in clinical oscillometry research.The aim of the task force was to provide technical recommendations regarding oscillometry measurement including hardware, software, testing protocols and quality control.The main changes in this update, compared with the 2003 ERS task force document are 1) new quality control procedures which reflect use of "within-breath" analysis, and methods of handling artefacts; 2) recommendation to disclose signal processing, quality control, artefact handling and breathing protocols (e.g. number and duration of acquisitions) in reports and publications to allow comparability and replication between devices and laboratories; 3) a summary review of new data to support threshold values for bronchodilator and bronchial challenge tests; and 4) updated list of predicted impedance values in adults and children.


Assuntos
Pulmão , Respiração , Adulto , Testes de Provocação Brônquica , Broncodilatadores , Criança , Humanos , Oscilometria
5.
Crit Care Med ; 48(1): e66-e73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634232

RESUMO

OBJECTIVES: The theoretical basis for minimizing tidal volume during high-frequency oscillatory ventilation may not be appropriate when lung tissue stretch occurs heterogeneously and/or rapidly. The objective of this study was to assess the extent to which increased ventilation heterogeneity may contribute to ventilator-induced lung injury during high-frequency oscillatory ventilation in adults compared with neonates on the basis of lung size, using a computational model of human lungs. DESIGN: Computational modeling study. SETTING: Research laboratory. SUBJECTS: High-fidelity, 3D computational models of human lungs, scaled to various sizes representative of neonates, children, and adults, with varying injury severity. All models were generated from one thoracic CT image of a healthy adult male. INTERVENTIONS: Oscillatory ventilation was simulated in each lung model at frequencies ranging from 0.2 to 40 Hz. Sinusoidal flow oscillations were delivered at the airway opening of each model and distributed through the lungs according to regional parenchymal mechanics. MEASUREMENTS AND MAIN RESULTS: Acinar flow heterogeneity was assessed by the coefficient of variation in flow magnitudes across all acini in each model. High-frequency oscillatory ventilation simulations demonstrated increasing heterogeneity of regional parenchymal flow with increasing lung size, with decreasing ratio of deadspace to total acinar volume, and with increasing frequency above lung corner frequency and resonant frequency. Potential for resonant amplification was greatest in injured adult-sized lungs with higher regional quality factors indicating the presence of underdamped lung regions. CONCLUSIONS: The potential for ventilator-induced lung injury during high-frequency oscillatory ventilation is enhanced at frequencies above lung corner frequency or resonant frequency despite reduced tidal volumes, especially in adults, due to regional amplification of heterogeneous flow. Measurements of corner frequency and resonant frequency should be considered during high-frequency oscillatory ventilation management.


Assuntos
Ventilação de Alta Frequência/efeitos adversos , Pulmão/anatomia & histologia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Adulto , Criança , Simulação por Computador , Humanos , Recém-Nascido , Tamanho do Órgão
7.
Anesthesiology ; 131(3): 716-749, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30664057

RESUMO

Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.


Assuntos
Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia
8.
Anesth Analg ; 126(1): 143-149, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28632529

RESUMO

BACKGROUND: In the 2014 PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure (PROVHILO) trial, intraoperative low tidal volume ventilation with high positive end-expiratory pressure (PEEP = 12 cm H2O) and lung recruitment maneuvers did not decrease postoperative pulmonary complications when compared to low PEEP (0-2 cm H2O) approach without recruitment breaths. However, effects of intraoperative PEEP on lung compliance remain poorly understood. We hypothesized that higher PEEP leads to a dominance of intratidal overdistension, whereas lower PEEP results in intratidal recruitment/derecruitment (R/D). To test our hypothesis, we used the volume-dependent elastance index %E2, a respiratory parameter that allows for noninvasive and radiation-free assessment of dominant overdistension and intratidal R/D. We compared the incidence of intratidal R/D, linear expansion, and overdistension by means of %E2 in a subset of the PROVHILO cohort. METHODS: In 36 patients from 2 participating centers of the PROVHILO trial, we calculated respiratory system elastance (E), resistance (R), and %E2, a surrogate parameter for intratidal overdistension (%E2 > 30%) and R/D (%E2 < 0%). To test the main hypothesis, we compared the incidence of intratidal overdistension (primary end point) and R/D in higher and lower PEEP groups, as measured by %E2. RESULTS: E was increased in the lower compared to higher PEEP group (18.6 [16…22] vs 13.4 [11.0…17.0] cm H2O·L; P < .01). %E2 was reduced in the lower PEEP group compared to higher PEEP (-15.4 [-28.0…6.5] vs 6.2 [-0.8…14.0] %; P < .05). Intratidal R/D was increased in the lower PEEP group (61% vs 22%; P = .037). The incidence of intratidal overdistension did not differ significantly between groups (6%). CONCLUSIONS: During mechanical ventilation with protective tidal volumes in patients undergoing open abdominal surgery, lung recruitment followed by PEEP of 12 cm H2O decreased the incidence of intratidal R/D and did not worsen overdistension, when compared to PEEP ≤2 cm H2O.


Assuntos
Abdome/cirurgia , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias/fisiopatologia , Mecânica Respiratória/fisiologia , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/prevenção & controle , Estudos Prospectivos
9.
J Clin Monit Comput ; 31(6): 1263-1271, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844299

RESUMO

Volatile anesthetics alter the physical properties of inhaled gases, such as density and viscosity. We hypothesized that the use of these agents during mechanical ventilation would yield systematic biases in estimates of flow ([Formula: see text]) and tidal volume (V T) for two commonly used flowmeters: the pneumotachograph (PNT), which measures a differential pressure across a calibrated resistive element, and the hot-wire anemometer (HWA), which operates based on convective heat transfer from a current-carrying wire to a flowing gas. We measured [Formula: see text] during ventilation of a spring-loaded mechanical test lung, using both the PNT and HWA placed in series at the airway opening. Delivered V T was estimated from the numerically-integrated [Formula: see text]. Measurements were acquired under baseline conditions with room air, and during ventilation with increasing concentrations of isoflurane, sevoflurane, and desflurane. We also evaluated a simple compensation technique for HWA flow, which accounted for changes in gas mixture density. We found that discrepancies in estimated V T between the PNT and HWA occurred during ventilation with isoflurane (6.3 ± 3.0%), sevoflurane (10.0 ± 7.3%), and desflurane (25.8 ± 17.2%) compared to baseline conditions. The magnitude of these discrepancies increased with anesthetic concentration. A simple compensation factor based on density reduced observed differences between the flowmeters, regardless of the anesthetic or concentration. These data indicate that the choice and concentration of anesthetic agents are primary factors for differences in estimated V T between the PNT and HWA. Such discrepancies may be compensated by accounting for alterations in gas density.


Assuntos
Anestesiologia/métodos , Anestésicos Inalatórios/administração & dosagem , Isoflurano/análogos & derivados , Éteres Metílicos/administração & dosagem , Respiração Artificial/métodos , Volume de Ventilação Pulmonar , Calibragem , Desflurano , Desenho de Equipamento , Hemodinâmica/efeitos dos fármacos , Humanos , Isoflurano/administração & dosagem , Pulmão , Monitorização Intraoperatória/métodos , Monitorização Fisiológica/métodos , Reprodutibilidade dos Testes , Sevoflurano , Temperatura
12.
Anesthesiology ; 123(6): 1394-403, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26495977

RESUMO

BACKGROUND: Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. The authors hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared with traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed "multifrequency oscillatory ventilation" (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. METHODS: Thirteen intubated preterm lambs were randomly assigned to either SFOV or MFOV for 1 h, followed by crossover to the alternative regimen for 1 h. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, whereas the customized MFOV waveform consisted of a 5-Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening ((Equation is included in full-text article.)) and inspired oxygen fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted at 15-min intervals. A ventilatory cost function for SFOV and MFOV was defined as (Equation is included in full-text article.), where Wt denotes body weight. RESULTS: Averaged over all time points, MFOV resulted in significantly lower VC (246.9 ± 6.0 vs. 363.5 ± 15.9 ml mmHg kg) and (Equation is included in full-text article.)(12.8 ± 0.3 vs. 14.1 ± 0.5 cm H2O) compared with SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. CONCLUSION: Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared with traditional single-frequency HFOV.


Assuntos
Ventilação de Alta Frequência/métodos , Pulmão/fisiopatologia , Respiração , Insuficiência Respiratória/prevenção & controle , Análise de Variância , Animais , Animais Recém-Nascidos , Gasometria/estatística & dados numéricos , Estudos Cross-Over , Impedância Elétrica , Mecânica Respiratória/fisiologia , Ovinos , Resultado do Tratamento
13.
Artigo em Inglês | MEDLINE | ID: mdl-26744597

RESUMO

Status asthmaticus (SA) is a severe, refractory form of asthma that can result in rapid respiratory deterioration and death. Treatment of SA with inhaled anesthetics is a potentially life-saving therapy, but remarkably few data are available about its mechanism of action or optimal administration. In this paper, we will review the clinical use of inhaled anesthetics for treatment of SA, the potential mechanisms by which they dilate constricted airways, and the side effects associated with their administration. We will also introduce the concept of 'targeted' delivery of these agents to the conducting airways, a process which may maximize their therapeutic effects while minimizing associated systemic side effects. Such a delivery regimen has the potential to define a rapidly translatable treatment paradigm for this life-threatening disorder.

14.
Respir Care ; 69(8): 1011-1024, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048146

RESUMO

Despite periodic changes in the clinical definition of ARDS, imaging of the lung remains a central component of its diagnostic identification. Several imaging modalities are available to the clinician to establish a diagnosis of the syndrome, monitor its clinical course, or assess the impact of treatment and management strategies. Each imaging modality provides unique insight into ARDS from structural and/or functional perspectives. This review will highlight several methods for lung imaging in ARDS, emphasizing basic operational and physical principles for the respiratory therapist. Advantages and disadvantages of each modality will be discussed in the context of their utility for clinical management and decision-making.


Assuntos
Pulmão , Síndrome do Desconforto Respiratório , Tomografia Computadorizada por Raios X , Humanos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia
15.
Sci Transl Med ; 16(760): eado1097, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141699

RESUMO

Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.


Assuntos
Pulmão , Respiração com Pressão Positiva , Respiração Artificial , Animais , Pulmão/fisiopatologia , Ovinos , Fenômenos Biomecânicos , Respiração Artificial/efeitos adversos , Pressão , Tomografia Computadorizada por Raios X , Volume de Ventilação Pulmonar
16.
Respir Care ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408775

RESUMO

BACKGROUD: Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [TE]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model. METHODS: Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and TE were measured from the expiratory flow profile. RESULTS: Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H2O/L to 39.9 ± 15.1cm H2O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H2O/L to 25.7 ± 10.0 cm H2O/L in the normal lung and 15.8 ± 6.0 cm H2O/L to 33.0 ± 6.2 cm H2O/L in the injured lung (P = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a TE decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s2 to 0.63 ± 0.05 L/s2 (ρ = 0.78). CONCLUSIONS: Changes in ELV over time, and the TE and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.

18.
Mil Med ; 188(Suppl 6): 141-148, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948236

RESUMO

INTRODUCTION: During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation. MATERIALS AND METHODS: The computational model consisted of a ventilator pressure source, a distensible breathing circuit, an endotracheal tube, and a porcine lung consisting of recruited and derecruited zones, as well as a transitional zone capable of intratidal R/D. Lung injury was simulated by modifying each acinus with an inflation-dependent surface tension. APRV was simulated for an inhalation duration (Thigh) of 4.0 seconds, inspiratory pressures (Phigh) of 28 and 40 cmH2O, and exhalation durations (Tlow) ranging from 0.2 to 1.5 seconds. RESULTS: Both sustained acinar recruitment and intratidal R/D within the subtree were consistently higher for Phigh of 40 cmH2O vs. 28 cmH2O, regardless of Tlow. Increasing Tlow was associated with decreasing sustained acinar recruitment, but increasing intratidal R/D, within the subtree. Increasing Tlow was associated with decreasing elastance of both the total respiratory system and transitional subtree of the model. CONCLUSIONS: Our computational model demonstrates the confounding effects of cyclic R/D, sustained recruitment, and parenchymal strain stiffening on estimates of total lung elastance during APRV. Increasing inspiratory pressures leads to not only more sustained recruitment of unstable acini but also more intratidal R/D. Our model indicates that higher inspiratory pressures should be used in conjunction with shorter exhalation times, to avoid increasing intratidal R/D.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Pulmão , Animais , Suínos , Respiração Artificial/efeitos adversos , Complacência Pulmonar , Simulação por Computador
19.
J Clin Med ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37510748

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.

20.
Front Physiol ; 14: 1287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028774

RESUMO

Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA