Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(51): 21630-21636, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34927433

RESUMO

Synthetic nanoscale devices that reconfigure dynamically in response to physiological stimuli could offer new avenues for diagnostics and therapy. Here, we report a strategy for controlling the state of DNA nanodevices based on sensing antigens with IgG antibodies. To this end, we use IgG antibodies as structural elements to kinetically trap reconfigurable DNA origami structures in metastable states. Addition of soluble antigens displace the IgGs from the objects and triggers reconfiguration. We demonstrate this mechanism by antigen-triggered disassembly of DNA origami shells for two different IgGs and their cognate antigens, and we determined the corresponding dose response curves. We also describe the logic-gated actuation of DNA objects with combinations of antigens, as demonstrated with AND-type shells that disassemble only when two different antigens are detected simultaneously. We apply our system for the antigen-triggered release of molecular payload as exemplified by the release of virus particles that we loaded into the DNA origami shells. We expect our approach to be applicable in many types of DNA nanostructures and with many other IgG-antigen combinations.


Assuntos
Antígenos/química , DNA/química , Nanoestruturas/química , Estrutura Molecular , Conformação de Ácido Nucleico
2.
ACS Nano ; 13(5): 5015-5027, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30990672

RESUMO

DNA origami nano-objects are usually designed around generic single-stranded "scaffolds". Many properties of the target object are determined by details of those generic scaffold sequences. Here, we enable designers to fully specify the target structure not only in terms of desired 3D shape but also in terms of the sequences used. To this end, we built design tools to construct scaffold sequences de novo based on strand diagrams, and we developed scalable production methods for creating design-specific scaffold strands with fully user-defined sequences. We used 17 custom scaffolds having different lengths and sequence properties to study the influence of sequence redundancy and sequence composition on multilayer DNA origami assembly and to realize efficient one-pot assembly of multiscaffold DNA origami objects. Furthermore, as examples for functionalized scaffolds, we created a scaffold that enables direct, covalent cross-linking of DNA origami via UV irradiation, and we built DNAzyme-containing scaffolds that allow postfolding DNA origami domain separation.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Composição de Bases , Sequência de Bases , Catálise , Reagentes de Ligações Cruzadas/química , DNA/ultraestrutura , Motivos de Nucleotídeos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA