Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7506-7514, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457476

RESUMO

Very recently, a new superconductor with Tc = 80 K has been reported in nickelate (La3Ni2O7) at around 15-40 GPa conditions (Nature, 621, 493, 2023), which is the second type of unconventional superconductor, besides cuprates, with Tc above liquid nitrogen temperature. However, the phase diagram plotted in this report was mostly based on the transport measurement under low-temperature and high-pressure conditions, and the assumed corresponding X-ray diffraction (XRD) results were carried out at room temperature. This encouraged us to carry out in situ high-pressure and low-temperature synchrotron XRD experiments to determine which phase is responsible for the high Tc state. In addition to the phase transition from the orthorhombic Amam structure to the orthorhombic Fmmm structure, a tetragonal phase with the space group of I4/mmm was discovered when the sample was compressed to around 19 GPa at 40 K where the superconductivity takes place in La3Ni2O7. The calculations based on this tetragonal structure reveal that the electronic states that approached the Fermi energy were mainly dominated by the eg orbitals (3dz2 and 3dx2-y2) of Ni atoms, which are located in the oxygen octahedral crystal field. The correlation between Tc and this structural evolution, especially Ni-O octahedra regularity and the in-plane Ni-O-Ni bonding angles, is analyzed. This work sheds new light to identify what is the most likely phase responsible for superconductivity in double-layered nickelate.

2.
Phys Rev Lett ; 133(6): 066001, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39178430

RESUMO

Superconductivity has been observed in many insulating transition metal dichalcogenides (TMDCs) under pressure. However, the origin of superconductivity remains elusive due to the lack of studies on their structures at low temperatures. Here, we report the observation of a high-T_{c} superconducting state (SC-I phase) coexisting with other superconducting states in a compressed 1T-HfS_{2} crystal up to approximately 160 GPa. In situ synchrotron x-ray diffraction results exclude the presence of decomposed sulfur and confirm two structural phase transitions at room temperature, as well as an additional transition at low temperature, which contribute to the emergence of multiple superconducting states. The SC-I phase exhibits an unsaturated T_{c} of 16.4 K at 158 GPa, and demonstrates the highest upper critical field among the bulk TMDCs, µ_{0}H_{c2}(0)≈29.7 T for a T_{c}∼15.2 K at 147 GPa, exceeding the weak-coupling Pauli limit. These results reveal abundant SC properties together with sensitive structures in compressed HfS_{2}, and thereby extend our understanding on TMDCs' superconductivity.

3.
J Chem Phys ; 156(6): 064504, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168349

RESUMO

We have measured the lattice volume of ice VIII in different pressure-temperature pathways and found that the volume depends on the pathway, implying that deviatoric stress makes the volume larger. Dense ice is in the ice VIII phase with the molar volume of 6.56 cm3 and in a high-pressure phase with the molar volume of 6.45 cm3 at 10 K where the pressure can be estimated as 57.0 ± 3.4 and 60.4 ± 3.6 GPa, respectively, based on the third-order Birch-Murnaghan equation with parameters determined in this study (K0 = 30.8 ± 1.3 GPa and K'0 = 3.7 ± 0.1 with V0 fixed to 12.030 cm3).

4.
J Phys Chem A ; 124(51): 10890-10896, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320010

RESUMO

High-pressure experiments were conducted to investigate the stability and phase transition of methane hydrate (MH) in the water-methane-ammonia system at room-to-high temperatures employing Raman spectroscopy and synchrotron X-ray powder diffraction, in combination with an externally heated diamond anvil cell. The results revealed that, at room temperature, MH undergoes phase transitions from MH-I to MH-II at ∼1.0 GPa and from MH-II to MH-III at ∼2.0 GPa. These transition behaviors are consistent with those in the water-methane system, which indicates that ammonia has a negligible effect on a series of phase transitions of MH. Contrarily, a sequential in situ Raman spectroscopy revealed that ammonia affects the stability of MH-III under high pressure and high temperature: the dissociation temperature of MH-III was more than 10 K lower in the water-methane-ammonia system than in the water-methane system. These findings aid in improving the internal structural models of icy bodies and estimating the origin of their atmospheric methane.

5.
J Chem Phys ; 152(19): 194308, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687263

RESUMO

High-pressure experiments were performed to understand the structural evolution of methane hydrate (MH) up to 134 GPa using x-ray powder diffraction (XRD) and Raman spectroscopy with diamond anvil cells. XRD revealed the distinct changes in the diffraction lines of MH owing to phase transition from a guest-ordered state phase [MH-III(GOS)] to a new high-pressure phase (MH-IV) at 33.8-57.7 GPa. MH-IV was found to be stable up to at least 134 GPa without decomposition into solid methane and high-pressure ices. Raman spectroscopy showed the splits in the C-H vibration modes ν3 and ν1 of guest methane molecules in filled-ice Ih (MH-III) at 12.7 GPa and 28.6 GPa, respectively. These splits are caused by orientational ordering of guest methane molecules contained in the hydrate structure, as observed in a previous study. These results suggest that the structural evolution of the filled-ice structure of MH is caused by successive orientational ordering of guest methane molecules, thereby inducing changes in the host framework formed by water molecules.

6.
J Chem Phys ; 148(16): 164503, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716198

RESUMO

High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

7.
J Chem Phys ; 142(2): 024707, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591377

RESUMO

The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI-sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With the sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.

8.
Dalton Trans ; 53(7): 3415-3416, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299469

RESUMO

Correction for '57Fe Mössbauer spectroscopy and high-pressure structural analysis for the mechanism of pressure-induced unique magnetic behaviour in (cation)[FeIIFeIII(dto)3] (cation = Ph4P and nPrPh3P; dto = 1,2-dithiooxalato)' by Ryosuke Taniai et al., Dalton Trans., 2023, 52, 8368-8375.

9.
Dalton Trans ; 52(24): 8368-8375, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37264672

RESUMO

A mixed-valence iron(II,III) coordination polymer, (Ph4P)[FeIIFeIII(dto)3] (2; Ph4P = tetraphenylphosphonium, dto = 1,2-dithiooxalato), exhibits a thermal hysteresis loop and a low temperature shift of the ferromagnetic phase transition temperature, with increasing pressure. The latter magnetic behaviour can also be observed in a novel compound (nPrPh3P)[FeIIFeIII(dto)3] (3; nPrPh3P = n-propyltriphenylphosphonium). To understand the structural information under pressure, we performed high-pressure powder X-ray diffraction, and the result suggests that there was no structural phase transition for either compound. Considering the 57Fe Mössbauer spectroscopy studies, both 2 and 3 may have a high transition entropy, and this finding is caused by pressure-induced unique magnetic behaviours.

10.
Sci Rep ; 11(1): 8165, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854182

RESUMO

Hydrocarbon chemistry in the C-O-H system at high pressure and high temperature is important for modelling the internal structure and evolution of giant icy planets, such as Uranus and Neptune, as their interiors are thought to be mainly composed of water and methane. In particular, the formation of diamond from the simplest hydrocarbon, i.e., methane, under the internal conditions of these planets has been discussed for nearly 40 years. Here, we demonstrate the formation of diamond from methane hydrate up to 3800 K and 45 GPa using a CO2 laser-heated diamond anvil cell combined with synchrotron X-ray diffraction, Raman spectroscopy, and scanning electron microscopy observations. The results show that the process of dissociation and polymerisation of methane molecules to produce heavier hydrocarbons while releasing hydrogen to ultimately form diamond proceeds at milder temperatures (~ 1600 K) and pressures (13-45 GPa) in the C-O-H system than in the C-H system due to the influence of water. Our findings suggest that diamond formation can also occur in the upper parts of the icy mantles of giant icy planets.

11.
Rev Sci Instrum ; 88(4): 044501, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456273

RESUMO

A large-strain, torsional deformation apparatus has been developed based on diamond anvil cells at high pressures, up to 135 GPa with a help of hard nano-polycrystalline diamond anvils. These pressure conditions correspond to the base of the Earth's mantle. An X-ray laminography technique is introduced for high-pressure in situ 3D observations of the strain markers. The technique developed in this study introduces the possibility of the in situ rheological measurements of the deep Earth materials under ultrahigh-pressure conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA