Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37286497

RESUMO

BACKGROUND: Townsville is in the dry tropics in Northern Australia and an endemic region for melioidosis. Melioidosis is an infectious disease caused by Burkholderia pseudomallei, a soil dwelling organism. The incidence of melioidosis is associated with high levels of rainfall and has been linked to multiple weather variables in other melioidosis endemic regions such as in Darwin. In contrast to Townsville, Darwin is in the wet-dry tropics in Northern Australia and receives 40% more rainfall. We assessed the relationship between melioidosis incidence and weather conditions in Townsville and compared the patterns to the findings in Darwin and other melioidosis endemic regions. METHOD: Performing a time series analysis from 1996 to 2020, we applied a negative binomial regression model to evaluate the link between the incidence of melioidosis in Townsville and various weather variables. Akaike's information criterion was used to assess the most parsimonious model with best predictive performance. Fourier terms and lagged deviance residuals were included to control long term seasonal trends and temporal autocorrelation. RESULTS: Humidity is the strongest predictor for melioidosis incidence in Townsville. Furthermore, the incidence of melioidosis showed a three-times rise in the Townsville region when >200 mm of rain fell within the fortnight. Prolonged rainfall had more impact than a heavy downpour on the overall melioidosis incident rate. There was no statistically significant increase in incidence with cloud cover in the multivariable model. CONCLUSION: Consistent with other reports, melioidosis incidence can be attributed to humidity and rainfall in Townsville. In contrast to Darwin, there was no strong link between melioidosis cases and cloud cover and nor single large rainfall events.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/epidemiologia , Melioidose/etiologia , Incidência , Austrália/epidemiologia , Clima
2.
J Clin Microbiol ; 60(3): e0164821, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080450

RESUMO

Each case of melioidosis results from a single event when a human is infected by the environmental bacterium Burkholderia pseudomallei. Darwin, in tropical northern Australia, has the highest incidences of melioidosis globally, and the Darwin Prospective Melioidosis Study (DPMS) commenced in 1989, documenting all culture-confirmed melioidosis cases. From 2000 to 2019, we sampled DPMS patients' environments for B. pseudomallei when a specific location was considered to be where infection occurred, with the aim of using genomic epidemiology to understand B. pseudomallei transmission and infecting scenarios. Environmental sampling was performed at 98 DPMS patient sites, where we collected 975 environmental samples (742 soil and 233 water). Genotyping matched the clinical and epidemiologically linked environmental B. pseudomallei for 19 patients (19%), with the environmental isolates cultured from soil (n = 11) and water (n = 8) sources. B. pseudomallei isolates from patients and their local environments that matched on genotyping were subjected to whole-genome sequencing (WGS). Of the 19 patients with a clinical-environmental genotype match, 17 pairs clustered on a Darwin core genome single-nucleotide polymorphism (SNP) phylogeny, later confirmed by single sequence typing (ST) phylogenies and pairwise comparative genomics. When related back to patient clinical scenarios, the matched clinical and environmental B. pseudomallei pairs informed likely modes of infection: percutaneous inoculation, inhalation, and ingestion. Targeted environmental sampling for B. pseudomallei can inform infecting scenarios for melioidosis and dangerous occupational and recreational activities and identify hot spots of B. pseudomallei presence. However, WGS and careful genomics are required to avoid overcalling the relatedness between clinical and environmental isolates of B. pseudomallei.


Assuntos
Burkholderia pseudomallei , Melioidose , Austrália/epidemiologia , Genômica/métodos , Humanos , Melioidose/epidemiologia , Melioidose/microbiologia , Estudos Prospectivos , Solo , Água
3.
PLoS Pathog ; 16(3): e1008298, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134991

RESUMO

Although acute melioidosis is the most common outcome of Burkholderia pseudomallei infection, we have documented a case, P314, where disease severity lessened with time, and the pathogen evolved towards a commensal relationship with the host. In the current study, we used whole-genome sequencing to monitor this long-term symbiotic relationship to better understand B. pseudomallei persistence in P314's sputum despite intensive initial therapeutic regimens. We collected and sequenced 118 B. pseudomallei isolates from P314's airways over a >16-year period, and also sampled the patient's home environment, recovering six closely related B. pseudomallei isolates from the household water system. Using comparative genomics, we identified 126 SNPs in the core genome of the 124 isolates or 162 SNPs/indels when the accessory genome was included. The core SNPs were used to construct a phylogenetic tree, which demonstrated a close relationship between environmental and clinical isolates and detailed within-host evolutionary patterns. The phylogeny had little homoplasy, consistent with a strictly clonal mode of genetic inheritance. Repeated sampling revealed evidence of genetic diversification, but frequent extinctions left only one successful lineage through the first four years and two lineages after that. Overall, the evolution of this population is nonadaptive and best explained by genetic drift. However, some genetic and phenotypic changes are consistent with in situ adaptation. Using a mouse model, P314 isolates caused greatly reduced morbidity and mortality compared to the environmental isolates. Additionally, potentially adaptive phenotypes emerged and included differences in the O-antigen, capsular polysaccharide, motility, and colony morphology. The >13-year co-existence of two long-lived lineages presents interesting hypotheses that can be tested in future studies to provide additional insights into selective pressures, niche differentiation, and microbial adaptation. This unusual melioidosis case presents a rare example of the evolutionary progression towards commensalism by a highly virulent pathogen within a single human host.


Assuntos
Burkholderia pseudomallei/fisiologia , Melioidose/microbiologia , Animais , Antibacterianos/administração & dosagem , Evolução Biológica , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Doença Crônica/terapia , Feminino , Genoma Bacteriano , Humanos , Estudos Longitudinais , Melioidose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Filogenia , Simbiose
4.
Appl Environ Microbiol ; 88(1): e0158321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644162

RESUMO

Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.


Assuntos
Burkholderia pseudomallei , Burkholderia , Animais , Técnicas de Tipagem Bacteriana , Burkholderia/genética , Burkholderia pseudomallei/genética , DNA Bacteriano/genética , Camundongos , Tipagem de Sequências Multilocus , Northern Territory , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Emerg Infect Dis ; 27(4): 1057-1067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754984

RESUMO

Since 2005, the range of Burkholderia pseudomallei sequence type 562 (ST562) has expanded in northern Australia. During 2005-2019, ST562 caused melioidosis in 61 humans and 3 animals. Cases initially occurred in suburbs surrounding a creek before spreading across urban Darwin, Australia and a nearby island community. In urban Darwin, ST562 caused 12% (53/440) of melioidosis cases, a proportion that increased during the study period. We analyzed 2 clusters of cases with epidemiologic links and used genomic analysis to identify previously unassociated cases. We found that ST562 isolates from Hainan Province, China, and Pingtung County, Taiwan, were distantly related to ST562 strains from Australia. Temporal genomic analysis suggested a single ST562 introduction into the Darwin region in ≈1988. The origin and transmission mode of ST562 into Australia remain uncertain.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Austrália , China , Variação Genética , Humanos , Filogenia , Taiwan
6.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257313

RESUMO

Melioidosis is a disease of significant public health importance that is being increasingly recognized globally. The majority of cases arise through direct percutaneous exposure to its etiological agent, Burkholderia pseudomallei In the Lao People's Democratic Republic (Laos), the presence and environmental distribution of B. pseudomallei are not well characterized, though recent epidemiological surveys of the bacterium have indicated that B. pseudomallei is widespread throughout the environment in the center and south of the country and that rivers can act as carriers and potential sentinels for the bacterium. The spatial and genetic distribution of B. pseudomallei within Vientiane Capital, from where the majority of cases diagnosed to date have originated, remains an important knowledge gap. We sampled surface runoff from drain catchment areas throughout urban Vientiane to determine the presence and local population structure of the bacterium. B. pseudomallei was detected in drainage areas throughout the capital, indicating it is widespread in the environment and that exposure rates in urban Vientiane are likely more frequent than previously thought. Whole-genome comparative analysis demonstrated that Lao B. pseudomallei isolates are highly genetically diverse, suggesting the bacterium is well-established and not a recent introduction. Despite the wide genome diversity, one environmental survey isolate was highly genetically related to a Lao melioidosis patient isolate collected 13 years prior to the study. Knowledge gained from this study will augment understanding of B. pseudomallei phylogeography in Asia and enhance public health awareness and future implementation of infection control measures within Laos.IMPORTANCE The environmental bacterium B. pseudomallei is the etiological agent of melioidosis, a tropical disease with one model estimating a global annual incidence of 165,000 cases and 89,000 deaths. In the Lao People's Democratic Republic (Laos), the environmental distribution and population structure of B. pseudomallei remain relatively undefined, particularly in Vientiane Capital from where most diagnosed cases have originated. We used surface runoff as a proxy for B. pseudomallei dispersal in the environment and performed whole-genome sequencing (WGS) to examine the local population structure. Our data confirmed that B. pseudomallei is widespread throughout Vientiane and that surface runoff might be useful for future environmental monitoring of the bacterium. B. pseudomallei isolates were also highly genetically diverse, suggesting the bacterium is well-established and endemic in Laos. These findings can be used to improve awareness of B. pseudomallei in the Lao environment and demonstrates the epidemiological and phylogeographical insights that can be gained from WGS.

7.
Emerg Infect Dis ; 25(9): 1770-1771, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31441753

RESUMO

Cane toads, an invasive species in Australia, are resistant to fungal pathogens affecting frogs worldwide (Batrachochytrium dendrobatidis). From toad skin swabs, we detected higher proportions of bacteria with antifungal properties in Queensland, where toad and pathogen distributions overlap, than in other sites. This finding suggests that site-specific pathogen pressures help shape skin microbial communities.


Assuntos
Antifúngicos/farmacologia , Bactérias/isolamento & purificação , Bufo marinus/microbiologia , Quitridiomicetos/efeitos dos fármacos , Pele/microbiologia , Animais , Espécies Introduzidas , Queensland
8.
BMC Vet Res ; 15(1): 458, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856823

RESUMO

BACKGROUND: Melioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe. Infection occurs in humans and animals, typically through direct exposure to soil or water containing the environmental bacterium Burkholderia pseudomallei. Case clusters of melioidosis have been described in humans following severe weather events and in exotic animals imported into melioidosis endemic zones. Direct transmission of B. pseudomallei between animals and/or humans has been documented but is considered extremely rare. Between March 2015 and October 2016 eight fatal cases of melioidosis were reported in slender-tailed meerkats (Suricata suricatta) on display at a Wildlife Park in Northern Australia. To further investigate the melioidosis case cluster we sampled the meerkat enclosure and adjacent park areas and performed whole-genome sequencing (WGS) on all culture-positive B. pseudomallei environmental and clinical isolates. RESULTS: WGS confirmed that the fatalities were caused by two different B. pseudomallei sequence types (STs) but that seven of the meerkat isolates were highly similar on the whole-genome level. Used concurrently with detailed pathology data, our results demonstrate that the seven cases originated from a single original source, but routes of infection varied amongst meerkats belonging to the clonal outbreak cluster. Moreover, in some instances direct transmission may have transpired through wounds inflicted while fighting. CONCLUSIONS: Collectively, this study supports the use of high-resolution WGS to enhance epidemiological investigations into transmission modalities and pathogenesis of melioidosis, especially in the instance of a possible clonal outbreak scenario in exotic zoological collections. Such findings from an animal outbreak have important One Health implications.


Assuntos
Burkholderia pseudomallei/genética , Herpestidae/microbiologia , Melioidose/veterinária , Animais , Animais de Zoológico , Austrália , Surtos de Doenças/veterinária , Microbiologia Ambiental , Feminino , Masculino , Melioidose/mortalidade , Melioidose/patologia , Melioidose/transmissão , Sequenciamento Completo do Genoma
9.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986727

RESUMO

During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43T, MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization-time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43T, MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382).IMPORTANCEBurkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with the closest relatives of B. pseudomallei referred to as the B. pseudomallei complex. A proposed novel species, B. humptydooensis sp. nov., was isolated from a bore water sample from the Northern Territory in Australia. B. humptydooensis sp. nov. is phylogenetically distinct from B. pseudomallei and other members of the B. pseudomallei complex, making it the fifth member of this important group of bacteria.


Assuntos
Burkholderia pseudomallei/classificação , Burkholderia/classificação , Burkholderia/genética , Burkholderia/fisiologia , Filogenia , Animais , Austrália , Técnicas de Tipagem Bacteriana/métodos , Burkholderia/isolamento & purificação , Infecções por Burkholderia/microbiologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Ácidos Graxos/análise , Genes Bacterianos/genética , Genoma Bacteriano , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus/métodos , Northern Territory , Fenótipo , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Especificidade da Espécie , Virulência , Microbiologia da Água
11.
Appl Environ Microbiol ; 82(3): 954-63, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26607593

RESUMO

Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia.


Assuntos
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Genoma Bacteriano , Melioidose/microbiologia , Animais , Ásia , Austrália/epidemiologia , DNA Bacteriano/genética , Variação Genética , Genômica/métodos , Genótipo , Humanos , Melioidose/epidemiologia , Melioidose/transmissão , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
12.
Emerg Infect Dis ; 21(11): 2052-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26488732

RESUMO

The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient.


Assuntos
Microbiologia do Ar , Burkholderia pseudomallei/genética , Transmissão de Doença Infecciosa , Melioidose/etiologia , Austrália , Burkholderia pseudomallei/isolamento & purificação , Burkholderia pseudomallei/patogenicidade , Humanos , Masculino , Melioidose/genética , Melioidose/microbiologia , Melioidose/transmissão , Pessoa de Meia-Idade , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/estatística & dados numéricos
13.
J Clin Microbiol ; 53(4): 1144-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631791

RESUMO

Melioidosis, a disease of public health importance in Southeast Asia and northern Australia, is caused by the Gram-negative soil bacillus Burkholderia pseudomallei. Melioidosis is typically acquired through environmental exposure, and case clusters are rare, even in regions where the disease is endemic. B. pseudomallei is classed as a tier 1 select agent by the Centers for Disease Control and Prevention; from a biodefense perspective, source attribution is vital in an outbreak scenario to rule out a deliberate release. Two cases of melioidosis within a 3-month period at a residence in rural northern Australia prompted an investigation to determine the source of exposure. B. pseudomallei isolates from the property's groundwater supply matched the multilocus sequence type of the clinical isolates. Whole-genome sequencing confirmed the water supply as the probable source of infection in both cases, with the clinical isolates differing from the likely infecting environmental strain by just one single nucleotide polymorphism (SNP) each. For the first time, we report a phylogenetic analysis of genomewide insertion/deletion (indel) data, an approach conventionally viewed as problematic due to high mutation rates and homoplasy. Our whole-genome indel analysis was concordant with the SNP phylogeny, and these two combined data sets provided greater resolution and a better fit with our epidemiological chronology of events. Collectively, this investigation represents a highly accurate account of source attribution in a melioidosis outbreak and gives further insight into a frequently overlooked reservoir of B. pseudomallei. Our methods and findings have important implications for outbreak source tracing of this bacterium and other highly recombinogenic pathogens.


Assuntos
Burkholderia pseudomallei/genética , Surtos de Doenças , Genoma Bacteriano/genética , Melioidose/microbiologia , Melioidose/transmissão , Microbiologia da Água , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/isolamento & purificação , Busca de Comunicante , Humanos , Dados de Sequência Molecular , Tipagem Molecular/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Abastecimento de Água
14.
J Clin Microbiol ; 53(1): 282-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339397

RESUMO

Twelve Burkholderia pseudomallei isolates collected over a 32-month period from a patient with chronic melioidosis demonstrated identical multilocus sequence types (STs). However, whole-genome sequencing suggests a polyclonal infection. This study is the first to report a mixed infection with the same ST.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Genoma Bacteriano/genética , Melioidose/microbiologia , Tipagem de Sequências Multilocus/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
15.
Int J Syst Evol Microbiol ; 65(7): 2265-2271, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25872960

RESUMO

Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia. They represented two multi-locus sequence analysis-based clusters, referred to as Bcc B and Bcc L. Three additional environmental and clinical Bcc B isolates were identified upon deposition of the sequences in the PubMLST database. Analysis of the concatenated nucleotide sequence divergence levels within both groups (1.4 and 1.9%, respectively) and towards established Bcc species (4.0 and 3.9%, respectively) demonstrated that the two taxa represented novel Bcc species. All 12 isolates were further characterized using 16S rRNA and recA gene sequence analysis, RAPD analysis, DNA base content determination, fatty acid methyl ester analysis and biochemical profiling. Analysis of recA gene sequences revealed a remarkable diversity within each of these taxa, but, together, the results supported the affiliation of the two taxa to the Bcc. Bcc B strains can be differentiated from most other Bcc members by the assimilation of maltose. Bcc L strains can be differentiated from other Bcc members by the absence of assimilation of N-acetylglucosamine. The names Burkholderia stagnalis sp. nov. with type strain LMG 28156(T) ( = CCUG 65686(T)) and Burkholderia territorii sp. nov. with type strain LMG 28158(T) ( = CCUG 65687(T)) are proposed for Bcc B and Bcc L bacteria, respectively.


Assuntos
Complexo Burkholderia cepacia/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Northern Territory , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Microbiologia do Solo , Escarro/microbiologia , Microbiologia da Água
16.
Emerg Infect Dis ; 20(10): 1739-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25272365

RESUMO

Melioidosis is an often fatal infectious disease affecting humans and animals in the tropics. Only sporadic cases have been reported from Africa and the Indian Ocean region. We describe 2 confirmed autochthonous cases of human melioidosis in Madagascar, both from novel genotypes of Burkholderia pseudomallei.


Assuntos
Melioidose/epidemiologia , Antibacterianos/uso terapêutico , Evolução Fatal , Humanos , Madagáscar/epidemiologia , Masculino , Melioidose/tratamento farmacológico , Pessoa de Meia-Idade
17.
Antimicrob Agents Chemother ; 58(1): 162-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24145517

RESUMO

Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Macrolídeos/farmacologia , Gentamicinas/farmacologia , Malásia , Testes de Sensibilidade Microbiana
18.
Appl Environ Microbiol ; 80(11): 3463-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657869

RESUMO

Burkholderia pseudomallei is a Gram-negative soil bacillus that is the etiological agent of melioidosis and a biothreat agent. Little is known about the biogeography of this bacterium in Australia, despite its hyperendemicity in the northern region of this continent. The population structure of 953 Australian B. pseudomallei strains representing 779 and 174 isolates of clinical and environmental origins, respectively, was analyzed using multilocus sequence typing (MLST). Bayesian population structure and network SplitsTree analyses were performed on concatenated MLST loci, and sequence type (ST) diversity and evenness were examined using Simpson's and Pielou's indices and a multivariate dissimilarity matrix. Bayesian analysis found two B. pseudomallei populations in Australia that were geographically distinct; isolates from the Northern Territory were grouped mainly into the first population, whereas the majority of isolates from Queensland were grouped in a second population. Differences in ST evenness were observed between sampling areas, confirming that B. pseudomallei is widespread and established across northern Australia, with a large number of fragmented habitats. ST analysis showed that B. pseudomallei populations diversified as the sampling area increased. This observation was in contrast to smaller sampling areas where a few STs predominated, suggesting that B. pseudomallei populations are ecologically established and not frequently dispersed. Interestingly, there was no identifiable ST bias between clinical and environmental isolates, suggesting the potential for all culturable B. pseudomallei isolates to cause disease. Our findings have important implications for understanding the ecology of B. pseudomallei in Australia and for potential source attribution of this bacterium in the event of unexpected cases of melioidosis.


Assuntos
Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Variação Genética , Filogeografia , Burkholderia pseudomallei/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Microbiologia Ambiental , Genótipo , Melioidose/microbiologia , Tipagem de Sequências Multilocus , Northern Territory , Queensland
19.
PLOS Glob Public Health ; 4(1): e0002064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170692

RESUMO

In Australia, there is a high burden of acute rheumatic fever (ARF) among Aboriginal and Torres Strait Islander peoples. Clinical diagnostic criteria can result in a diagnosis of 'definite', 'probable' or 'possible' ARF and outcomes range from recovery to severe rheumatic heart disease (RHD). We compared outcomes by ARF diagnosis, where the main outcome was defined as disease progression from: possible to probable ARF, definite ARF or RHD; probable to definite ARF or RHD; or definite ARF to definite ARF recurrence or RHD. Data were extracted from the Northern Territory RHD register for Indigenous Australians with an initial diagnosis of ARF during the 5.5-year study period (01/01/2013-30/06/2019). Descriptive statistics were used to describe cohort characteristics, probability of survival, and cumulative incidence risk of disease progression. Cox proportional hazards regression was used to determine whether time to disease progression differed according to ARF diagnosis. Sub-analyses on RHD outcome, clinical manifestations, and antibiotic adherence were also performed. In total there were 913 cases with an initial ARF diagnosis. Of these, 92 (13%) experienced disease progression. The probability of disease progression significantly differed between ARF diagnoses (p = 0.0043; log rank test). Cumulative incidence risk of disease progression at 5.5 years was 33.6% (95% CI 23.6-46.2) for definite, 13.5% (95% CI 8.8-20.6) for probable and 11.4% (95% CI 6.0-21.3) for possible ARF. Disease progression was 2.19 times more likely in those with definite ARF than those with possible ARF (p = 0.026). Progression to RHD was reported in 52/732 (7%) of ARF cases with normal baseline echocardiography. There was a significantly higher risk of progression from no RHD to RHD if the initial diagnosis was definite compared to possible ARF (p<0.001). These data provide a useful way to stratify risk and guide prognosis for people diagnosed with ARF and can help inform practice.

20.
Trop Med Infect Dis ; 9(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668532

RESUMO

Melioidosis is a potentially life-threatening infection. This study aimed to assess the melioidosis knowledge among distinct participant groups in the tropical Top End of the Northern Territory (NT) of Australia. Participants were categorised into three groups: NT medical students and health research staff (Group 1: Hi-Ed), Aboriginal Rangers and Aboriginal Healthcare Workers (Group 2: Rangers/AHWs), and patients with a history of melioidosis infection (Group 3: Patients). A questionnaire was developed to collect data on demographics, risk and protective factor awareness, and knowledge acquisition sources. We used responses to calculate indices for risk knowledge (RKI), protective knowledge (PKI), overall melioidosis knowledge (MKI), and information sources (ISI). We found that 93.6% of participants in Group 1 (Hi-Ed) said that they had heard of melioidosis, followed by 81.5% in Group 3 (Patients), and 72.0% in Group 2 (Rangers/AHWs). Group 1 (Hi-Ed) participants demonstrated greater knowledge of risk-increasing behaviours but had gaps in knowledge of clinical risks like diabetes. Multiple regression revealed that the number of resources used was the only significant predictor of MKI. There are varying melioidosis knowledge levels across different NT participant groups. Targeted educational interventions are needed to enhance melioidosis awareness. A weblink with an interactive summary of our analysis can be found under Results part.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA