Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Gene Ther ; 30(3-4): 386-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36258038

RESUMO

Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes. We showed that fetal and neonatal livers are comprised of proliferative hepatocytes with abundant expression of genes involved in homology-directed repair (HDR) of DNA double-strand breaks (DSBs), key for efficient gene editing by CRISPR/Cas9. We demonstrated the same is true of hepatocytes after undergoing a regenerative stimulus (partial hepatectomy), where post-hepatectomy cells show a higher efficiency of HDR and correction. Specifically, we demonstrated that HDR-related genome correction is most effective in the replicative phase, or S-phase, of an actively proliferating cell. In conclusion, this study shows that taking advantage of or triggering cell proliferation, specifically DNA replication in S-phase, may serve as an important tool to improve efficiency of CRISPR/Cas9-mediated genome editing in the liver and provide a curative therapy for IEMs in both children and adults.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Reparo de DNA por Recombinação , Quebras de DNA de Cadeia Dupla , DNA , Reparo do DNA
2.
J Inherit Metab Dis ; 44(6): 1369-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896013

RESUMO

Phenylketonuria (PKU) is the most common inborn error of metabolism of the liver, and results from mutations of both alleles of the phenylalanine hydroxylase gene (PAH). As such, it is a suitable target for gene therapy via gene delivery with a recombinant adeno-associated virus (AAV) vector. Here we use the synthetic AAV vector Anc80 via systemic administration to deliver a functional copy of a codon-optimized human PAH gene, with or without an intron spacer, to the Pahenu2 mouse model of PKU. Dose-dependent transduction of the liver and expression of PAH mRNA were present with both vectors, resulting in significant and durable reduction of circulating phenylalanine, reaching near control levels in males. Coat color of treated Pahenu2 mice reflected an increase in pigmentation from brown to the black color of control animals, further indicating functional restoration of phenylalanine metabolism and its byproduct melanin. There were no adverse effects associated with administration of AAV up to 5 × 1012 VG/kg, the highest dose tested. Only minor and/or transient variations in some liver enzymes were observed in some of the AAV-dosed animals which were not associated with pathology findings in the liver. Finally, there was no impact on cell turnover or apoptosis as evaluated by Ki-67 and TUNEL staining, further supporting the safety of this approach. This study demonstrates the therapeutic potential of AAV Anc80 to safely and durably cure PKU in a mouse model, supporting development for clinical consideration.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/terapia , Animais , Linhagem Celular , DNA Recombinante/administração & dosagem , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Cor de Cabelo , Humanos , Injeções Intravenosas , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina/sangue , Fenilalanina Hidroxilase/imunologia , Fenilalanina Hidroxilase/metabolismo , Transdução Genética/métodos
5.
Nat Cell Biol ; 9(5): 550-5, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17417626

RESUMO

Mitochondria are critically involved in necrotic cell death induced by Ca(2+) overload, hypoxia and oxidative damage. The mitochondrial permeability transition (MPT) pore - a protein complex that spans both the outer and inner mitochondrial membranes - is considered the mediator of this event and has been hypothesized to minimally consist of the voltage-dependent anion channel (Vdac) in the outer membrane, the adenine-nucleotide translocase (Ant) in the inner membrane and cyclophilin-D in the matrix. Here, we report the effects of deletion of the three mammalian Vdac genes on mitochondrial-dependent cell death. Mitochondria from Vdac1-, Vdac3-, and Vdac1-Vdac3-null mice exhibited a Ca(2+)- and oxidative stress-induced MPT that was indistinguishable from wild-type mitochondria. Similarly, Ca(2+)- and oxidative-stress-induced MPT and cell death was unaltered, or even exacerbated, in fibroblasts lacking Vdac1, Vdac2, Vdac3, Vdac1-Vdac3 and Vdac1-Vdac2-Vdac3. Wild-type and Vdac-deficient mitochondria and cells also exhibited equivalent cytochrome c release, caspase cleavage and cell death in response to the pro-death Bcl-2 family members Bax and Bid. These results indicate that Vdacs are dispensable for both MPT and Bcl-2 family member-driven cell death.


Assuntos
Apoptose , Permeabilidade da Membrana Celular , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Cálcio/metabolismo , Caspases/metabolismo , Morte Celular , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Citocromos c/metabolismo , Camundongos , Camundongos Knockout , Translocases Mitocondriais de ADP e ATP/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Mitocondriais/metabolismo , Dilatação Mitocondrial , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2 , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Transfecção , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/deficiência , Canais de Ânion Dependentes de Voltagem/genética
6.
Nat Commun ; 13(1): 5012, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008405

RESUMO

Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach.


Assuntos
Lesões Pré-Cancerosas , Tirosinemias , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Cirrose Hepática/terapia , Nitrobenzoatos/farmacologia , Nitrobenzoatos/uso terapêutico , Suínos , Tirosinemias/genética , Tirosinemias/terapia
7.
Nature ; 434(7033): 658-62, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15800627

RESUMO

Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D (the Ppif gene product), a prolyl isomerase located within the mitochondrial matrix. Here we generated mice lacking Ppif and mice overexpressing cyclophilin D in the heart. Ppif null mice are protected from ischaemia/reperfusion-induced cell death in vivo, whereas cyclophilin D-overexpressing mice show mitochondrial swelling and spontaneous cell death. Mitochondria isolated from the livers, hearts and brains of Ppif null mice are resistant to mitochondrial swelling and permeability transition in vitro. Moreover, primary hepatocytes and fibroblasts isolated from Ppif null mice are largely protected from Ca2+-overload and oxidative stress-induced cell death. However, Bcl-2 family member-induced cell death does not depend on cyclophilin D, and Ppif null fibroblasts are not protected from staurosporine or tumour-necrosis factor-alpha-induced death. Thus, cyclophilin D and the mitochondrial permeability transition are required for mediating Ca2+- and oxidative damage-induced cell death, but not Bcl-2 family member-regulated death.


Assuntos
Ciclofilinas/deficiência , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Adenoviridae/genética , Animais , Atractilosídeo/farmacologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Encéfalo/citologia , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citocromos c/metabolismo , Fibroblastos , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Fígado/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Dilatação Mitocondrial/efeitos dos fármacos , Dilatação Mitocondrial/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2
8.
PLoS One ; 16(1): e0245831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493163

RESUMO

Phenylketonuria (PKU) is a metabolic disorder whereby phenylalanine metabolism is deficient due to allelic variations in the gene for phenylalanine hydroxylase (PAH). There is no cure for PKU other than orthotopic liver transplantation, and the standard of care for patients is limited to dietary restrictions and key amino acid supplementation. Therefore, Pah was edited in pig fibroblasts for the generation of PKU clone piglets that harbor a common and severe human mutation, R408W. Additionally, the proximal region to the mutation was further humanized by introducing 5 single nucleotide polymorphisms (SNPs) to allow for development of gene editing machinery that could be translated directly from the pig model to human PKU patients that harbor at least one classic R408W allele. Resulting piglets were hypopigmented (a single Ossabaw piglet) and had low birthweight (all piglets). The piglets had similar levels of PAH expression, but no detectable enzymatic activity, consistent with the human phenotype. The piglets were fragile and required extensive neonatal care to prevent failure to thrive and early demise. Phenylalanine levels rose sharply when dietary Phe was unrestricted but could be rapidly reduced with a low Phe diet. Fibroblasts isolated from R408W piglets show susceptibility to correction using CRISPR or TALEN, with subsequent homology-directed recombination to correct Pah. This pig model of PKU provides a powerful new tool for development of all classes of therapeutic candidates to treat or cure PKU, as well as unique value for proof-of-concept studies for in vivo human gene editing platforms in the context of this humanized PKU allele.


Assuntos
Edição de Genes/métodos , Mutação , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Animais , Sequência de Bases , Modelos Animais de Doenças , Humanos , Fenótipo , Segurança , Suínos
9.
Expert Opin Orphan Drugs ; 8(7): 245-256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224636

RESUMO

INTRODUCTION: Inborn errors of metabolism (IEMs) often result from single-gene mutations and collectively cause liver dysfunction in neonates leading to chronic liver and systemic disease. Current treatments for many IEMs are limited to maintenance therapies that may still require orthotropic liver transplantation. Gene therapies offer a potentially superior approach by correcting or replacing defective genes with functional isoforms; however, they face unique challenges from complexities presented by individual diseases and their diverse etiology, presentation, and pathophysiology. Furthermore, immune responses, off-target gene disruption, and tumorigenesis are major concerns that need to be addressed before clinical application of gene therapy. AREAS COVERED: The current treatments for IEMs are reviewed as well as the advances in, and barriers to, gene therapy for IEMs. Attention is then given to ex vivo and in vivo gene therapy approaches for hereditary tyrosinemia type 1 (HT1). Of all IEMs, HT1 is particularly amenable to gene therapy because of a selective growth advantage conferred to corrected cells, thereby lowering the initial transduction threshold for phenotypic relevance. EXPERT OPINION: It is proposed that not only is HT1 a safe indication for gene therapy, its unique characteristics position it to be an ideal IEM to develop for clinical investigation.

10.
Mol Ther Methods Clin Dev ; 18: 738-750, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913881

RESUMO

The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.

11.
Circ Res ; 101(3): 313-21, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17569887

RESUMO

The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy.


Assuntos
Cardiomegalia/fisiopatologia , Moléculas de Adesão Celular/fisiologia , Remodelação Ventricular/fisiologia , Envelhecimento/patologia , Animais , Cardiomegalia/etiologia , Adesão Celular , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cicatriz/etiologia , Cicatriz/patologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Granulócitos/patologia , Ruptura Cardíaca/etiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Pressão , Proteínas Recombinantes de Fusão/fisiologia , Regulação para Cima
12.
Hepatol Commun ; 3(4): 558-573, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976745

RESUMO

Ex vivo CRISPR/Cas9-mediated gene editing in hepatocytes using homology-directed repair (HDR) is a potential alternative curative therapy to organ transplantation for metabolic liver disease. However, a major limitation of this approach in quiescent adult primary hepatocytes is that nonhomologous end-joining is the predominant DNA repair pathway for double-strand breaks (DSBs). This study explored the hypothesis that ex vivo hepatocyte culture could reprogram hepatocytes to favor HDR after CRISPR/Cas9-mediated DNA DSBs. Quantitative PCR (qPCR), RNA sequencing, and flow cytometry demonstrated that within 24 hours, primary mouse hepatocytes in ex vivo monolayer culture decreased metabolic functions and increased expression of genes related to mitosis progression and HDR. Despite the down-regulation of hepatocyte function genes, hepatocytes cultured for up to 72 hours could robustly engraft in vivo. To assess functionality long-term, primary hepatocytes from a mouse model of hereditary tyrosinemia type 1 bearing a single-point mutation were transduced ex vivo with two adeno-associated viral vectors to deliver the Cas9 nuclease, target guide RNAs, and a 1.2-kb homology template. Adeno-associated viral Cas9 induced robust cutting at the target locus, and, after delivery of the repair template, precise correction of the point mutation occurred by HDR. Edited hepatocytes were transplanted into recipient fumarylacetoacetate hydrolase knockout mice, resulting in engraftment, robust proliferation, and prevention of liver failure. Weight gain and biochemical assessment revealed normalization of metabolic function. Conclusion: The results of this study demonstrate the potential therapeutic effect of ex vivo hepatocyte-directed gene editing after reprogramming to cure metabolic disease in a preclinical model of hereditary tyrosinemia type 1.

13.
Cell Transplant ; 28(1): 79-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30477316

RESUMO

Orthotopic liver transplantation remains the only curative therapy for inborn errors of metabolism. Given the tremendous success for primary immunodeficiencies using ex-vivo gene therapy with lentiviral vectors, there is great interest in developing similar curative therapies for metabolic liver diseases. We have previously generated a pig model of hereditary tyrosinemia type 1 (HT1), an autosomal recessive disorder caused by deficiency of fumarylacetoacetate hydrolase (FAH). Using this model, we have demonstrated curative ex-vivo gene and cell therapy using a lentiviral vector to express FAH in autologous hepatocytes. To further evaluate the long-term clinical outcomes of this therapeutic approach, we continued to monitor one of these pigs over the course of three years. The animal continued to thrive off the protective drug NTBC, gaining weight appropriately, and maintaining sexual fecundity for the course of his life. The animal was euthanized 31 months after transplantation to perform a thorough biochemical and histological analysis. Biochemically, liver enzymes and alpha-fetoprotein levels remained normal and abhorrent metabolites specific to HT1 remained corrected. Liver histology showed no evidence of tumorigenicity and Masson's trichrome staining revealed minimal fibrosis and no evidence of cirrhosis. FAH-immunohistochemistry revealed complete repopulation of the liver by transplanted FAH-positive cells. A complete histopathological report on other organs, including kidney, revealed no abnormalities. This study is the first to demonstrate long-term safety and efficacy of hepatocyte-directed gene therapy in a large animal model. We conclude that hepatocyte-directed ex-vivo gene therapy is a rational choice for further exploration as an alternative therapeutic approach to whole organ transplantation for metabolic liver disease, including HT1.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Hidrolases/metabolismo , Tirosinemias/enzimologia , Tirosinemias/terapia , Animais , Biologia Computacional , Modelos Animais de Doenças , Hidrolases/genética , Masculino , Suínos , Tirosinemias/metabolismo
14.
J Vis Exp ; (141)2018 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-30451238

RESUMO

Gene therapy is an ideal choice to cure many inborn errors of metabolism of the liver. Ex-vivo, lentiviral vectors have been used successfully in the treatment of many hematopoietic diseases in humans, as their use offers stable transgene expression due to the vector's ability to integrate into the host genome. This method demonstrates the application of ex vivo gene therapy of hepatocytes to a large animal model of hereditary tyrosinemia type I. This process consists of 1) isolation of primary hepatocytes from the autologous donor/recipient animal, 2) ex vivo gene delivery via hepatocyte transduction with a lentiviral vector, and 3) autologous transplant of corrected hepatocytes via portal vein injection. Success of the method generally relies upon efficient and sterile removal of the liver resection, careful handling of the excised specimen for isolation of viable hepatocytes sufficient for re-engrafting, high-percentage transduction of the isolated cells, and aseptic surgical procedures throughout to prevent infection. Technical failure at any of these steps will result in low yield of viable transduced hepatocytes for autologous transplant or infection of the donor/recipient animal. The pig model of human type 1 hereditary tyrosinemia (HT-1) chosen for this approach is uniquely amenable to such a method, as even a small percentage of engraftment of corrected cells will lead to repopulation of the liver with healthy cells based on a powerful selective advantage over native-diseased hepatocytes. Although this growth selection will not be true for all indications, this approach is a foundation for expansion into other indications and allows for manipulation of this environment to address additional diseases, both within the liver and beyond, while controlling for exposure to viral vector and opportunity for off-target toxicity and tumorigenicity.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Hepatócitos/transplante , Transplante Autólogo/métodos , Animais , Modelos Animais de Doenças , Suínos
15.
Surgery ; 164(3): 473-481, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884476

RESUMO

BACKGROUND: Autologous hepatocyte transplantation after ex vivo gene therapy is an alternative to liver transplantation for metabolic liver disease. Here we evaluate ex vivo gene therapy followed by transplantation of single-cell or spheroid hepatocytes. METHODS: Pig and mouse hepatocytes were isolated, labeled with zirconium-89 and returned to the liver as single cells or spheroids. Biodistribution was evaluated through positron emission tomography-computed tomography. Fumarylacetoacetate hydrolase-deficient pig hepatocytes were isolated and transduced with a lentiviral vector containing the Fah gene. Animals received portal vein infusion of single-cell or spheroid autologous hepatocytes after ex vivo gene delivery. Portal pressures were measured and ultrasound was used to evaluate for thrombus. Differences in engraftment and expansion of ex vivo corrected single-cell or spheroid hepatocytes were followed through histologic analysis and animals' ability to thrive off 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione. RESULTS: Positron emission tomography-computed tomography imaging showed spheroid hepatocytes with increased heterogeneity in biodistribution as compared with single cells, which spread more uniformly throughout the liver. Animals receiving spheroids experienced higher mean changes in portal pressure than animals receiving single cells (P < .01). Additionally, two animals from the spheroid group developed portal vein thrombi that required systemic anticoagulation. Immunohistochemical analysis of spheroid- and single-cell-transplanted animals showed similar engraftment and expansion rates of fumarylacetoacetate hydrolase-positive hepatocytes in the liver, correlating with similar weight stabilization curves. CONCLUSION: Ex vivo gene correction of autologous hepatocytes in fumarylacetoacetate hydrolase-deficient pigs can be performed using hepatocyte spheroids or single-cell hepatocytes, with spheroids showing a more heterogeneous distribution within the liver and higher risks for portal vein thrombosis and increased portal pressures.


Assuntos
Transplante de Células/métodos , Terapia Genética , Hepatócitos/transplante , Esferoides Celulares/transplante , Tirosinemias/terapia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Suínos , Tirosinemias/diagnóstico por imagem , Tirosinemias/patologia
16.
Circ Res ; 91(4): 292-9, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12193461

RESUMO

The presence of multiple receptors for disparate nucleotides on endothelial cells makes it unclear how the endothelium differentiates among these signals. We propose that endothelial P2Y receptors are organized into cholesterol-rich signaling domains, such as caveolae and respond to nucleotide agonists by mobilizing intracellular calcium. Treatment of endothelial cells with 5 mmol/L beta-methyl-cyclodextrin prevents calcium release in response to the nucleotide receptor agonists 2-methylthio-ATP, ATP, ADP, and UTP, but not the kinin receptor agonist bradykinin, suggesting that depletion of membrane cholesterol disrupts signaling at P2Y receptors and that bradykinin receptors are not prelocalized to cholesterol microdomains in these cells. Direct measurement of cholesterol content after beta-methyl-cyclodextrin treatment of aortic rings reveals a concentration-dependent depletion of cholesterol that parallels functional antagonism of P2Y-mediated relaxation. Nucleotide- and bradykinin-mediated relaxation is disrupted by 5 to 15 mmol/L beta -methyl-cyclodextrin treatment or 1 to 10 microg/mL filipin III in a concentration-dependent fashion. Norepinephrine contracted aorta treated with A23187 relaxes in an endothelium-dependent fashion despite depletion of 84% of membrane-extractable cholesterol. These data indicate that in the basal state, P2Y receptors but not the kinin receptor may be compartmented to cholesterol-dependent signaling domains in guinea pig endothelium and that cholesterol-rich microdomains in these cells can respond to intracellular calcium in an agonist-specific manner. We suggest that the functional organization of cholesterol-rich signaling microdomains allows agonist-specific responses to increases in intracellular calcium and that this property may be a general phenomenon that permits cells to respond disparately to agonists that may signal through common calcium release pathways.


Assuntos
Compartimento Celular/fisiologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Colesterol/metabolismo , Ciclodextrinas/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Corantes Fluorescentes , Cobaias , Técnicas In Vitro , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
17.
Circ Res ; 94(1): 91-9, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14615291

RESUMO

Cardiovascular disease is the leading cause of mortality and morbidity within the industrialized nations of the world, with coronary heart disease (CHD) accounting for as much as 66% of these deaths. Acute myocardial infarction is a typical sequelae associated with long-standing coronary heart disease resulting in large scale loss of ventricular myocardium through both apoptotic and necrotic cell death. In this study, we investigated the role that the calcium calmodulin-activated protein phosphatase calcineurin (PP2B) plays in modulating cardiac apoptosis after acute ischemia-reperfusion injury to the heart. Calcineurin Abeta gene-targeted mice showed a greater loss of viable myocardium, enhanced DNA laddering and TUNEL, and a greater loss in functional performance compared with strain-matched wild-type control mice after ischemia-reperfusion injury. RNA expression profiling was performed to uncover potential mechanisms associated with this loss of cardioprotection. Interestingly, calcineurin Abeta-/- hearts were characterized by a generalized downregulation in gene expression representing approximately 6% of all genes surveyed. Consistent with this observation, nuclear factor of activated T cells (NFAT)-luciferase reporter transgenic mice showed reduced expression in calcineurin Abeta-/- hearts at baseline and after ischemia-reperfusion injury. Finally, expression of an activated NFAT mutant protected cardiac myocytes from apoptotic stimuli, whereas directed inhibition of NFAT augmented cell death. These results represent the first genetic loss-of-function data showing a prosurvival role for calcineurin-NFAT signaling in the heart.


Assuntos
Apoptose , Calcineurina/fisiologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteínas Nucleares , Animais , Calcineurina/genética , Sobrevivência Celular , Células Cultivadas , Proteínas de Ligação a DNA/fisiologia , Perfilação da Expressão Gênica , Marcação de Genes , Coração/fisiopatologia , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Fatores de Transcrição NFATC , Fatores de Transcrição/fisiologia
18.
Circulation ; 109(16): 1938-41, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15096454

RESUMO

BACKGROUND: Myocardial infarction causes a rapid and largely irreversible loss of cardiac myocytes that can lead to sudden death, ventricular dilation, and heart failure. Members of the mitogen-activated protein kinase (MAPK) signaling cascade have been implicated as important effectors of cardiac myocyte cell death in response to diverse stimuli, including ischemia-reperfusion injury. Specifically, activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) has been associated with cardioprotection, likely through antagonism of apoptotic regulatory pathways. METHODS AND RESULTS: To establish a causal relationship between ERK1/2 signaling and cardioprotection, we analyzed Erk1 nullizygous gene-targeted mice, Erk2 heterozygous gene-targeted mice, and transgenic mice with activated MEK1-ERK1/2 signaling in the heart. Although MEK1 transgenic mice were largely resistant to ischemia-reperfusion injury, Erk2+/- gene-targeted mice showed enhanced infarction areas, DNA laddering, and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick-end labeling (TUNEL) compared with littermate controls. In contrast, enhanced MEK1-ERK1/2 signaling protected hearts from DNA laddering, TUNEL, and preserved hemodynamic function assessed by pressure-volume loop recordings after ischemia-reperfusion injury. CONCLUSIONS: These data are the first to demonstrate that ERK2 signaling is required to protect the myocardium from ischemia-reperfusion injury in vivo.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Isquemia Miocárdica/enzimologia , Animais , Apoptose , Hemodinâmica , MAP Quinase Quinase 1 , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/enzimologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-25959881

RESUMO

INTRODUCTION: Proactive efforts to socially house laboratory animals are a contemporary, important focus for enhancing animal welfare. Jacketing cynomolgus monkeys has been traditionally considered an exclusionary criterion for social housing based on unsubstantiated concerns that study conduct or telemetry equipment might be compromised. Our objective was to evaluate the effects of jacketing naïve, adolescent cynomolgus monkeys in different single and social housing types based on parallel comparisons of heart rate. METHODS: Eight naive cynomolgus monkeys were randomized into pairs and ECG data were collected for 24h from each animal in each housing condition using a crossover design. Caging paradigms consisted of standard individual, standard pair, quaternary pair (4 linked cages), and European-style pair housing in non-sequential order varied by pair to control for possible time bias. Dosing and blood collection procedures were performed to characterize any effects of housing on ECG data during study conduct. RESULTS: There was no increase in the incidence of equipment damage in pair vs. individually housed animals. Further, animals in all 4 housing paradigms showed similar acclimation assessed as heart rate (mean 139-154 beats per minute), and maintained similar diurnal rhythms, with an expected slowing of the heart rate at night (aggregate lights out HR 110±4bpm compared to daytime 146±7bpm). DISCUSSION: This study demonstrates the effects of different social access and housing types on the study-naïve cynomolgus monkeys during jacketed cardiovascular telemetry data collection in a repeat-dose toxicology study design. There were no discernible effects of social housing on baseline ECG parameters collected via jacketed telemetry, and all animals maintained expected diurnal rhythms in all housing settings tested. These data demonstrate that cynomolgus monkeys can be socially housed during data collection as a standard practice, consistent with global efforts to improve study animal welfare.


Assuntos
Ritmo Circadiano/fisiologia , Frequência Cardíaca/fisiologia , Abrigo para Animais , Telemetria/métodos , Bem-Estar do Animal , Animais , Estudos Cross-Over , Eletrocardiografia/métodos , Macaca fascicularis , Masculino , Testes de Toxicidade/métodos
20.
Br J Pharmacol ; 135(2): 537-45, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11815389

RESUMO

The vasodilatory effects of nucleotides in the guinea-pig thoracic aorta were examined to determine the relationship between molecular expression and function of P2Y receptors. In aortic rings precontracted with norepinephrine, vasodilatory responses to purine nucleotides exhibited a rank-order of potency of 2-methylthio-ATP>ADP>ATP. Responses to UTP, but not UDP suggested a functional role for P2Y4 but not P2Y6 receptors. Aortic endothelial cells express at least four P2Y receptors; P2Y1, P2Y2, P2Y4 and P2Y6. In primary culture, these cells exhibit desensitizing transient calcium responses characteristic of P2Y1, P2Y2 and P2Y4, but not P2Y6 receptors. UDP had no effect on endothelial cell calcium. The pyrimidinergic receptor agonist UTP is capable of eliciting robust vasodilation in aortic rings and causing calcium responses in cultured guineapig aortic endothelial cells. These responses are equivalent to the maximum responses observed to ATP and ADP. Measurement of intracellular calcium release in response to ATP and 2-methylthio-ATP were similar, however only the 2-methylthio-ATP response was sensitive to the P2Y1 antagonist N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179). In aortic rings, vasodilatory responses to 2-methylthio-ATP, ATP and ADP were all blocked by pre-incubation of tissues with MRS2179. MRS2179 pretreatment had no effect of the ability of UTP to cause relaxation of norepinephrine responses in aortic rings or the ability of UTP to cause calcium release in aortic endothelial cells. We demonstrate robust effects of purine and pyrimidine nucleotides in guineapig aorta and provide functional and biochemical evidence that MRS2179 is a selective P2Y1 antagonist.


Assuntos
Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Aorta Torácica/efeitos dos fármacos , Uridina Trifosfato/farmacologia , Vasodilatação/efeitos dos fármacos , Difosfato de Adenosina/análogos & derivados , Animais , Aorta Torácica/fisiologia , Relação Dose-Resposta a Droga , Feminino , Cobaias , Antagonistas do Receptor Purinérgico P2 , RNA/antagonistas & inibidores , RNA/genética , RNA/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA