Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7756): 388-392, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043748

RESUMO

Resistive switching, a phenomenon in which the resistance of a device can be modified by applying an electric field1-5, is at the core of emerging technologies such as neuromorphic computing and resistive memories6-9. Among the different types of resistive switching, threshold firing10-14 is one of the most promising, as it may enable the implementation of artificial spiking neurons7,13,14. Threshold firing is observed in Mott insulators featuring an insulator-to-metal transition15,16, which can be triggered by applying an external voltage: the material becomes conducting ('fires') if a threshold voltage is exceeded7,10-12. The dynamics of this induced transition have been thoroughly studied, and its underlying mechanism and characteristic time are well documented10,12,17,18. By contrast, there is little knowledge regarding the opposite transition: the process by which the system returns to the insulating state after the voltage is removed. Here we show that Mott nanodevices retain a memory of previous resistive switching events long after the insulating resistance has recovered. We demonstrate that, although the device returns to its insulating state within 50 to 150 nanoseconds, it is possible to re-trigger the insulator-to-metal transition by using subthreshold voltages for a much longer time (up to several milliseconds). We find that the intrinsic metastability of first-order phase transitions is the origin of this phenomenon, and so it is potentially present in all Mott systems. This effect constitutes a new type of volatile memory in Mott-based devices, with potential applications in resistive memories, solid-state frequency discriminators and neuromorphic circuits.

2.
Nano Lett ; 22(3): 1251-1256, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35061947

RESUMO

Probabilistic computing is a paradigm in which data are not represented by stable bits, but rather by the probability of a metastable bit to be in a particular state. The development of this technology has been hindered by the availability of hardware capable of generating stochastic and tunable sequences of "1s" and "0s". The options are currently limited to complex CMOS circuitry and, recently, magnetic tunnel junctions. Here, we demonstrate that metal-insulator transitions can also be used for this purpose. We use an electrical pump/probe protocol and take advantage of the stochastic relaxation dynamics in VO2 to induce random metallization events. A simple latch circuit converts the metallization sequence into a random stream of 1s and 0s. The resetting pulse in between probes decorrelates successive events, providing a true stochastic digital sequence.


Assuntos
Metais , Probabilidade
3.
Proc Natl Acad Sci U S A ; 116(18): 8798-8802, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30975746

RESUMO

Controlling the electronic properties of oxides that feature a metal-insulator transition (MIT) is a key requirement for developing a new class of electronics often referred to as "Mottronics." A simple, controllable method to switch the MIT properties in real time is needed for practical applications. Here we report a giant, nonvolatile resistive switching (ΔR/R > 1,000%) and strong modulation of the MIT temperature (ΔTc > 30 K) in a voltage-actuated V2O3/PMN-PT [Pb(Mg,Nb)O3-PbTiO3] heterostructure. This resistive switching is an order of magnitude larger than ever encountered in any other similar systems. The control of the V2O3 electronic properties is achieved using the transfer of switchable ferroelastic strain from the PMN-PT substrate into the epitaxially grown V2O3 film. Strain can reversibly promote/hinder the structural phase transition in the V2O3, thus advancing/suppressing the associated MIT. The giant resistive switching and strong Tc modulation could enable practical implementations of voltage-controlled Mott devices and provide a platform for exploring fundamental electronic properties of V2O3.

4.
Phys Rev Lett ; 122(5): 057601, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821990

RESUMO

The interdependences of different phase transitions in Mott materials are fundamental to the understanding of the mechanisms behind them. One of the most important relations is between the ubiquitous structural and electronic transitions. Using IR spectroscopy, optical reflectivity, and x-ray diffraction, we show that the metal-insulator transition is coupled to the structural phase transition in V_{2}O_{3} films. This coupling persists even in films with widely varying transition temperatures and strains. Our findings are in contrast to recent experimental findings and theoretical predictions. Using V_{2}O_{3} as a model system, we discuss the pitfalls in measurements of the electronic and structural states of Mott materials in general, calling for a critical examination of previous work in this field. Our findings also have important implications for the performance of Mott materials in next-generation neuromorphic computing technology.

5.
Nano Lett ; 17(5): 2934-2939, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28406304

RESUMO

Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.

6.
ACS Appl Mater Interfaces ; 13(1): 887-896, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33351594

RESUMO

Vanadium oxides are strongly correlated materials which display metal-insulator transitions (MITs) as well as various structural and magnetic properties that depend heavily on oxygen stoichiometry. Therefore, it is crucial to precisely control oxygen stoichiometry in these materials, especially in thin films. This work demonstrates a high-vacuum gas evolution technique which allows for the modification of oxygen concentrations in VOX thin films by carefully tuning the thermodynamic conditions. We were able to control the evolution between VO2, V3O5, and V2O3 phases on sapphire substrates, overcoming the narrow phase stability of adjacent Magnéli phases. A variety of annealing routes were found to achieve the desired phases and eventually control the MIT. The pronounced MIT of the transformed films along with the detailed structural investigations based on X-ray diffraction measurements and X-ray photoelectron spectroscopy show that optimal stoichiometry is obtained and stabilized. Using this technique, we find that the thin-film V-O phase diagram differs from that of the bulk material because of strain and finite size effects. Our study demonstrates new pathways to strategically tune the oxygen stoichiometry in complex oxides and provides a road map for understanding the phase stability of VOX thin films.

7.
Nat Commun ; 12(1): 5499, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535660

RESUMO

Application of an electric stimulus to a material with a metal-insulator transition can trigger a large resistance change. Resistive switching from an insulating into a metallic phase, which typically occurs by the formation of a conducting filament parallel to the current flow, is a highly active research topic. Using the magneto-optical Kerr imaging, we found that the opposite type of resistive switching, from a metal into an insulator, occurs in a reciprocal characteristic spatial pattern: the formation of an insulating barrier perpendicular to the driving current. This barrier formation leads to an unusual N-type negative differential resistance in the current-voltage characteristics. We further demonstrate that electrically inducing a transverse barrier enables a unique approach to voltage-controlled magnetism. By triggering the metal-to-insulator resistive switching in a magnetic material, local on/off control of ferromagnetism is achieved using a global voltage bias applied to the whole device.

8.
Nat Nanotechnol ; 16(6): 680-687, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33737724

RESUMO

To circumvent the von Neumann bottleneck, substantial progress has been made towards in-memory computing with synaptic devices. However, compact nanodevices implementing non-linear activation functions are required for efficient full-hardware implementation of deep neural networks. Here, we present an energy-efficient and compact Mott activation neuron based on vanadium dioxide and its successful integration with a conductive bridge random access memory (CBRAM) crossbar array in hardware. The Mott activation neuron implements the rectified linear unit function in the analogue domain. The neuron devices consume substantially less energy and occupy two orders of magnitude smaller area than those of analogue complementary metal-oxide semiconductor implementations. The LeNet-5 network with Mott activation neurons achieves 98.38% accuracy on the MNIST dataset, close to the ideal software accuracy. We perform large-scale image edge detection using the Mott activation neurons integrated with a CBRAM crossbar array. Our findings provide a solution towards large-scale, highly parallel and energy-efficient in-memory computing systems for neural networks.


Assuntos
Computadores , Nanotecnologia/instrumentação , Redes Neurais de Computação , Benchmarking , Bases de Dados Factuais , Desenho de Equipamento , Neurônios/fisiologia , Óxidos/química , Compostos de Vanádio/química
9.
Science ; 373(6557): 907-911, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301856

RESUMO

Many correlated systems feature an insulator-to-metal transition that can be triggered by an electric field. Although it is known that metallization takes place through filament formation, the details of how this process initiates and evolves remain elusive. We use in-operando optical reflectivity to capture the growth dynamics of the metallic phase with space and time resolution. We demonstrate that filament formation is triggered by nucleation at hotspots, with a subsequent expansion over several decades in time. By comparing three case studies (VO2, V3O5, and V2O3), we identify the resistivity change across the transition as the crucial parameter governing this process. Our results provide a spatiotemporal characterization of volatile resistive switching in Mott insulators, which is important for emerging technologies, such as optoelectronics and neuromorphic computing.

10.
Sci Adv ; 7(45): eabj1164, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34730993

RESUMO

In solids, strong repulsion between electrons can inhibit their movement and result in a "Mott" metal-to-insulator transition (MIT), a fundamental phenomenon whose understanding has remained a challenge for over 50 years. A key issue is how the wave-like itinerant electrons change into a localized-like state due to increased interactions. However, observing the MIT in terms of the energy- and momentum-resolved electronic structure of the system, the only direct way to probe both itinerant and localized states, has been elusive. Here we show, using angle-resolved photoemission spectroscopy (ARPES), that in V2O3, the temperature-induced MIT is characterized by the progressive disappearance of its itinerant conduction band, without any change in its energy-momentum dispersion, and the simultaneous shift to larger binding energies of a quasi-localized state initially located near the Fermi level.

11.
Sci Rep ; 10(1): 4292, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152331

RESUMO

Machine learning imitates the basic features of biological neural networks at a software level. A strong effort is currently being made to mimic neurons and synapses with hardware components, an approach known as neuromorphic computing. While recent advances in resistive switching have provided a path to emulate synapses at the 10 nm scale, a scalable neuron analogue is yet to be found. Here, we show how heat transfer can be utilized to mimic neuron functionalities in Mott nanodevices. We use the Joule heating created by current spikes to trigger the insulator-to-metal transition in a biased VO2 nanogap. We show that thermal dynamics allow the implementation of the basic neuron functionalities: activity, leaky integrate-and-fire, volatility and rate coding. This approach could enable neuromorphic hardware to take full advantage of the rapid advances in memristive synapses, allowing for much denser and complex neural networks.

12.
Nat Commun ; 11(1): 2985, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532988

RESUMO

Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators-VO2 and V2O3 we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2 and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators.

13.
Phys Rev Lett ; 103(19): 197003, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365947

RESUMO

The temperature evolution of the proximity effect in Au/La(2-x)Sr(x)CuO(4) and La(1.55)Sr(0.45)CuO(4)/La(2-x)Sr(x)CuO(4) bilayers was investigated using scanning tunneling microscopy. Proximity-induced gaps, centered at the chemical potential, were found to persist above the superconducting transition temperature, T(c), and up to nearly the pseudogap crossover temperature in both systems. Such independence of the spectra on the details of the normal-metal cap layer is incompatible with a density-wave order origin. However, our results can be accounted for by a penetration of incoherent Cooper pairs into the normal metal above T(c).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA