Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 142(2): 284-95, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655469

RESUMO

Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Plantas/microbiologia
2.
Bioinformatics ; 37(6): 800-806, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063084

RESUMO

MOTIVATION: Nearly 40% of the genes in sequenced genomes have no experimentally or computationally derived functional annotations. To fill this gap, we seek to develop methods for network-based gene function prediction that can integrate heterogeneous data for multiple species with experimentally based functional annotations and systematically transfer them to newly sequenced organisms on a genome-wide scale. However, the large sizes of such networks pose a challenge for the scalability of current methods. RESULTS: We develop a label propagation algorithm called FastSinkSource. By formally bounding its rate of progress, we decrease the running time by a factor of 100 without sacrificing accuracy. We systematically evaluate many approaches to construct multi-species bacterial networks and apply FastSinkSource and other state-of-the-art methods to these networks. We find that the most accurate and efficient approach is to pre-compute annotation scores for species with experimental annotations, and then to transfer them to other organisms. In this manner, FastSinkSource runs in under 3 min for 200 bacterial species. AVAILABILITY AND IMPLEMENTATION: An implementation of our framework and all data used in this research are available at https://github.com/Murali-group/multi-species-GOA-prediction. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bactérias , Genoma , Algoritmos , Bactérias/genética , Sequência de Bases , Fenótipo
3.
PLoS Pathog ; 16(9): e1008854, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956405

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen of immunocompromised patient populations. Mortality is thought to be context-specific and occurs via both enhanced fungal growth and immunopathogenesis. NLRX1 is a negative regulator of immune signaling and metabolic pathways implicated in host responses to microbes, cancers, and autoimmune diseases. Our study indicates loss of Nlrx1 results in enhanced fungal burden, pulmonary inflammation, immune cell recruitment, and mortality across immuno-suppressed and immuno-competent models of IPA using two clinically derived isolates (AF293, CEA10). We observed that the heightened mortality is due to enhanced recruitment of CD103+ dendritic cells (DCs) that produce elevated amounts of IL-4 resulting in a detrimental Th2-mediated immune response. Adoptive transfer of Nlrx1-/- CD103+ DCs in neutropenic NRG mice results in enhanced mortality that can be ablated using IL-4 neutralizing antibodies. In vitro analysis of CD103+ DCs indicates loss of Nlrx1 results in enhanced IL-4 production via elevated activation of the JNK/JunB pathways. Interestingly, loss of Nlrx1 also results in enhanced recruitment of monocytes and neutrophils. Chimeras of irradiated Nlrx1-/- mice reconstituted with wild type bone marrow have enhanced neutrophil recruitment and survival during models of IPA. This enhanced immune cell recruitment in the absence of Nlrx1 is mediated by excessive production of CXCL8/IL-8 family of chemokines and IL-6 via early and enhanced activation of P38 in response to A. fumigatus conidia as shown in BEAS-2B airway epithelial cells. In summary, our results point strongly towards the cell-specific and contextual function of Nlrx1 during invasive pulmonary aspergillosis and may lead to novel therapeutics to reduce Th2 responses by CD103+ DCs or heightened recruitment of neutrophils.


Assuntos
Aspergillus fumigatus/imunologia , Células Dendríticas/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Mitocondriais/imunologia , Aspergilose Pulmonar/imunologia , Células Th2/imunologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Neutrófilos/imunologia , Neutrófilos/patologia , Aspergilose Pulmonar/genética , Aspergilose Pulmonar/patologia , Células Th2/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
4.
BMC Genomics ; 19(1): 705, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253736

RESUMO

BACKGROUND: Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS: We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS: Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Especificidade de Hospedeiro/genética , Doenças das Plantas/microbiologia , Adaptação Fisiológica , Ascomicetos/classificação , Ascomicetos/patogenicidade , Deleção de Genes , Perfilação da Expressão Gênica , Genes Fúngicos , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Micélio/genética , Micélio/metabolismo , Técnicas de Tipagem Micológica , Poaceae/microbiologia
5.
Bioinformatics ; 33(19): 3134-3136, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957495

RESUMO

SUMMARY: Networks have become ubiquitous in systems biology. Visualization is a crucial component in their analysis. However, collaborations within research teams in network biology are hampered by software systems that are either specific to a computational algorithm, create visualizations that are not biologically meaningful, or have limited features for sharing networks and visualizations. We present GraphSpace, a web-based platform that fosters team science by allowing collaborating research groups to easily store, interact with, layout and share networks. AVAILABILITY AND IMPLEMENTATION: Anyone can upload and share networks at http://graphspace.org. In addition, the GraphSpace code is available at http://github.com/Murali-group/graphspace if a user wants to run his or her own server. CONTACT: murali@cs.vt.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Biologia de Sistemas/métodos , Algoritmos , Biologia Computacional , Comunicação Interdisciplinar
6.
Plant J ; 83(4): 610-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26082394

RESUMO

The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/metabolismo , Brassica napus/microbiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética
7.
Cytogenet Genome Res ; 149(4): 290-296, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27728911

RESUMO

Nucleolar dominance is a dramatic disruption in the formation of nucleoli and the expression of ribosomal RNA (rRNA) genes, characteristic of some plant and animal hybrids. Here, we report that F1 hybrids produced from reciprocal crosses between 2 sister species of Xenopus clawed frogs, X. muelleri and X. borealis, undergo nucleolar dominance somewhat distinct from a pattern previously reported in hybrids between phylogenetically more distant Xenopus species. Patterns of nucleolar development, 45S rRNA expression, and gene copy inheritance were investigated using a combination of immunostaining, pyrosequencing, droplet digital PCR, flow cytometry, and epigenetic inhibition. In X. muelleri × X. borealis hybrids, typically only 1 nucleolus is formed, and 45S rRNA genes are predominantly expressed from 1 progenitor's alleles, X. muelleri, regardless of the cross-direction. These changes are accompanied by an extensive (∼80%) loss of rRNA gene copies in the hybrids relative to their parents, with the transcriptionally underdominant variant (X. borealis) being preferentially lost. Chemical treatment of hybrid larvae with a histone deacetylase inhibitor resulted in a partial derepression of the underdominant variant. Together, these observations shed light on the genetic and epigenetic basis of nucleolar dominance as an underappreciated manifestation of genetic conflicts within a hybrid genome.


Assuntos
Nucléolo Celular/genética , Repressão Epigenética/genética , Genes Dominantes/genética , Genes de RNAr/genética , Hibridização Genética/genética , RNA Ribossômico/genética , Xenopus/genética , Alelos , Animais , Feminino , Larva/genética , Masculino , RNA Ribossômico 18S/genética
8.
New Phytol ; 221(3): 1177-1179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30644579
9.
Plant Cell ; 23(6): 2064-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21653195

RESUMO

The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.


Assuntos
Phytophthora/genética , Phytophthora/metabolismo , Phytophthora/patogenicidade , Transcrição Gênica , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Animais , Morte Celular/fisiologia , Regulação da Expressão Gênica , Análise em Microsséries , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Glycine max/genética , Glycine max/imunologia , Glycine max/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
10.
Mol Plant Microbe Interact ; 26(3): 330-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23075041

RESUMO

Oomycetes such as Phytophthora sojae employ effector proteins that enter plant cells to facilitate infection. Entry of some effector proteins is mediated by RxLR motifs in the effectors and phosphoinositides (PIP) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effectors involved in PIP recognition. We have structurally and functionally characterized the P. sojae effector, avirulence homolog-5 (Avh5). Using nuclear magnetic resonance (NMR) spectroscopy, we demonstrate that Avh5 is helical in nature, with a long N-terminal disordered region. NMR titrations of Avh5 with the PtdIns(3)P head group, inositol 1,3-bisphosphate, directly identified the ligand-binding residues. A C-terminal lysine-rich helical region (helix 2) was the principal lipid-binding site, with the N-terminal RxLR (RFLR) motif playing a more minor role. Mutations in the RFLR motif affected PtdIns(3)P binding, while mutations in the basic helix almost abolished it. Mutations in the RFLR motif or in the basic region both significantly reduced protein entry into plant and human cells. Both regions independently mediated cell entry via a PtdIns(3)P-dependent mechanism. Based on these findings, we propose a model where Avh5 interacts with PtdIns(3)P through its C terminus, and by binding of the RFLR motif, which promotes host cell entry.


Assuntos
Glycine max/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Phytophthora/metabolismo , Doenças das Plantas/parasitologia , Proteínas/química , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Dicroísmo Circular , Interações Hospedeiro-Parasita , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Mutação , Phytophthora/citologia , Phytophthora/genética , Phytophthora/patogenicidade , Raízes de Plantas/parasitologia , Ligação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão , Ressonância de Plasmônio de Superfície , Temperatura
11.
Mol Plant Microbe Interact ; 26(7): 711-20, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23530601

RESUMO

Resistance to Phytophthora sojae (Rps) genes have been widely used in soybean against root and stem rot diseases caused by this oomycete. Among 15 known soybean Rps genes, Rps1k has been the most widely used in the past four decades. Here, we show that the products of two distinct but closely linked RxLR effector genes are detected by Rps1k-containing plants, resulting in disease resistance. One of the genes is Avr1b-1, that confers avirulence in the presence of Rps1b. Three lines of evidence, including overexpression and gene silencing of Avr1b-1 in stable P. sojae transformants, as well as transient expression of this gene in soybean, indicated that Avr1b could trigger an Rps1k-mediated defense response. Some isolates of P. sojae that do not express Avr1b are nevertheless unable to infect Rps1k plants. In those isolates, we identified a second RxLR effector gene (designated Avr1k), located 5 kb away from Avr1b-1. Silencing or overexpression of Avr1k in P. sojae stable transformants resulted in the loss or gain, respectively, of the avirulence phenotype in the presence of Rps1k. Only isolates of P. sojae with mutant alleles of both Avr1b-1 and Avr1k could evade perception by the soybean plants carrying Rps1k.


Assuntos
Resistência à Doença , Glycine max/imunologia , Phytophthora/genética , Doenças das Plantas/imunologia , Fatores de Virulência/metabolismo , Alelos , Sequência de Aminoácidos , Morte Celular , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Genes de Plantas/genética , Ligação Genética , Loci Gênicos , Genótipo , Hipocótilo/imunologia , Hipocótilo/parasitologia , Dados de Sequência Molecular , Fenótipo , Phytophthora/patogenicidade , Phytophthora/fisiologia , Doenças das Plantas/parasitologia , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Caules de Planta/imunologia , Caules de Planta/parasitologia , Polimorfismo Genético , Plântula/imunologia , Plântula/parasitologia , Glycine max/parasitologia , Virulência , Fatores de Virulência/genética
12.
Mol Plant Microbe Interact ; 26(6): 611-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23550528

RESUMO

A wide diversity of pathogens and mutualists of plant and animal hosts, including oomycetes and fungi, produce effector proteins that enter the cytoplasm of host cells. A major question has been whether or not entry by these effectors can occur independently of the microbe or requires machinery provided by the microbe. Numerous publications have documented that oomycete RxLR effectors and fungal RxLR-like effectors can enter plant and animal cells independent of the microbe. A recent reexamination of whether the RxLR domain of oomycete RxLR effectors is sufficient for microbe-independent entry into host cells concluded that the RxLR domains of Phytophthora infestans Avr3a and of P. sojae Avr1b alone are NOT sufficient to enable microbe-independent entry of proteins into host and nonhost plant and animal cells. Here, we present new, more detailed data that unambiguously demonstrate that the RxLR domain of Avr1b does show efficient and specific entry into soybean root cells and also into wheat leaf cells, at levels well above background nonspecific entry. We also summarize host cell entry experiments with a wide diversity of oomycete and fungal effectors with RxLR or RxLR-like motifs that have been independently carried out by the seven different labs that coauthored this letter. Finally we discuss possible technical reasons why specific cell entry may have been not detected by Wawra et al. (2013).


Assuntos
Glycine max/fisiologia , Oomicetos/fisiologia , Phytophthora infestans/fisiologia , Triticum/fisiologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Estrutura Terciária de Proteína , Transporte Proteico , Reprodutibilidade dos Testes , Glycine max/microbiologia , Triticum/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
PLoS Pathog ; 7(11): e1002353, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102810

RESUMO

Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity.


Assuntos
Fosforilases/metabolismo , Phytophthora/enzimologia , Imunidade Vegetal , Fatores de Virulência/metabolismo , Adenosina Difosfato Ribose/metabolismo , Alelos , Genótipo , Dados de Sequência Molecular , Mutação , NAD/metabolismo , Fosforilases/química , Fosforilases/genética , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Pirofosfatases/química , Espécies Reativas de Oxigênio/metabolismo , Glycine max/imunologia , Glycine max/parasitologia , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Fatores de Virulência/biossíntese , Nudix Hidrolases
14.
Plants (Basel) ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840230

RESUMO

Blight caused by Phytophthora pathogens has a devastating impact on crop production. Phytophthora species secrete an array of effectors, such as Phytophthora cactorum-Fragaria (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in Phytophthora cactorum. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops.

15.
New Phytol ; 214(1): 8-10, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28239893
16.
New Phytol ; 193(4): 874-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22403824

RESUMO

Oomycete and fungal symbionts have significant impacts on most commercially important crop and forest species, and on natural ecosystems, both negatively as pathogens and positively as mutualists. Symbiosis may be facilitated through the secretion of effector proteins, some of which modulate a variety of host defense mechanisms. A subset of these secreted proteins are able to translocate into host cells. In the oomycete pathogens, two conserved N-terminal motifs, RXLR and dEER, mediate translocation of effector proteins into host cells independent of any pathogen-encoded machinery. An expanded 'RXLR-like' motif [R/K/H]X[L/M/I/F/Y/W]X has been used to identify functional translocation motifs in host-cell-entering fungal effector proteins from pathogens and a mutualist. The RXLR-like translocation motifs were required for the fungal effectors to enter host cells in the absence of any pathogen-encoded machinery. Oomycete and fungal effectors with RXLR and RXLR-like motifs can bind phospholipids, specifically phosphatidylinositol-3-phosphate (PtdIns-3-P). Effector-PtdIns-3-P binding appears to mediate cell entry via lipid raft-mediated endocytosis, and could be blocked by sequestering cell surface PtdIns-3-P or by utilizing inositides that competitively inhibit effector binding to PtdIns-3-P. These findings suggest that effector blocking technologies could be developed and utilized in a variety of important crop species against a broad spectrum of plant pathogens.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/patogenicidade , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Produtos Agrícolas/microbiologia , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipídeos/metabolismo , Simbiose
17.
Cell Microbiol ; 13(12): 1839-48, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21819515

RESUMO

Fungal and oomycete pathogens cause many destructive diseases of plants and important diseases of humans and other animals. Fungal and oomycete plant pathogens secrete numerous effector proteins that can enter inside host cells to condition susceptibility. Until recently it has been unknown if these effectors enter via pathogen-encoded translocons or via pathogen-independent mechanisms. Here we review recent evidence that many fungal and oomycete effectors enter via receptor-mediated endocytosis, and can do so in the absence of the pathogen. Surprisingly, a large number of these effectors utilize cell surface phosphatidyinositol-3-phosphate (PI-3-P) as a receptor, a molecule previously known only inside cells. Binding of effectors to PI-3-P appears to be mediated by the cell entry motif RXLR in oomycetes, and by diverse RXLR-like variants in fungi. PI-3-P appears to be present on the surface of animal cells also, suggesting that it may mediate entry of effectors of fungal and oomycete animal pathogens, for example, RXLR effectors found in the oomycete fish pathogen, Saprolegnia parasitica. Reagents that can block PI-3-P-mediated entry have been identified, suggesting new therapeutic strategies.


Assuntos
Endocitose , Oomicetos/patogenicidade , Fosfatos de Fosfatidilinositol/metabolismo , Células Vegetais/microbiologia , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos , Doenças dos Animais/microbiologia , Animais , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Ligação Proteica , Transporte Proteico
18.
Front Immunol ; 12: 749504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790195

RESUMO

The Nlr family member X1 (Nlrx1) is an immuno-metabolic hub involved in mediating effective responses to virus, bacteria, fungi, cancer, and auto-immune diseases. We have previously shown that Nlrx1 is a critical regulator of immune signaling and mortality in several models of pulmonary fungal infection using the clinically relevant fungus Aspergillus fumigatus. In the absence of Nlrx1, hosts produce an enhanced Th2 response primarily by CD103+ dendritic cell populations resulting in enhanced mortality via immunopathogenesis as well as enhanced fungal burden. Here, we present our subsequent efforts showcasing loss of Nlrx1 resulting in a decreased ability of host cells to process A. fumigatus conidia in a cell-type-specific manner by BEAS-2B airway epithelial cells, alveolar macrophages, bone marrow-derived macrophages, but not bone marrow-derived neutrophils. Furthermore, loss of Nlrx1 results in a diminished ability to generate superoxide and/or generic reactive oxygen species during specific responses to fungal PAMPs, conidia, and hyphae. Analysis of glycolysis and mitochondrial function suggests that Nlrx1 is needed to appropriately shut down glycolysis in response to A. fumigatus conidia and increase glycolysis in response to hyphae in BEAS-2B cells. Blocking glycolysis and pentose phosphate pathway (PPP) via 2-DG and NADPH production through glucose-6-phosphate dehydrogenase inhibitor resulted in significantly diminished conidial processing in wild-type BEAS-2B cells to the levels of Nlrx1-deficient BEAS-2B cells. Our findings suggest a need for airway epithelial cells to generate NADPH for reactive oxygen species production in response to conidia via PPP. In context to fungal pulmonary infections, our results show that Nlrx1 plays significant roles in host defense via PPP modulation of several aspects of metabolism, particularly glycolysis, to facilitate conidia processing in addition to its critical role in regulating immune signaling.


Assuntos
Aspergillus fumigatus , Proteínas Mitocondriais/metabolismo , Animais , Aspergilose , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glicólise , Humanos , Hifas , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos
19.
Cell Rep ; 36(3): 109392, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289364

RESUMO

Chitin, a major component of fungal cell walls, has been associated with allergic disorders such as asthma. However, it is unclear how mammals recognize chitin and the principal receptor(s) on epithelial cells that sense chitin remain to be determined. In this study, we show that LYSMD3 is expressed on the surface of human airway epithelial cells and demonstrate that LYSMD3 is able to bind chitin, as well as ß-glucan, on the cell walls of fungi. Knockdown or knockout of LYSMD3 also sharply blunts the production of inflammatory cytokines by epithelial cells in response to chitin and fungal spores. Competitive inhibition of the LYSMD3 ectodomain by soluble LYSMD3 protein, multiple ligands, or antibody against LYSMD3 also blocks chitin signaling. Our study reveals LYSMD3 as a mammalian pattern recognition receptor (PRR) for chitin and establishes its role in epithelial cell inflammatory responses to chitin and fungi.


Assuntos
Quitina , Mamíferos , Proteínas de Membrana , Receptores de Reconhecimento de Padrão , Animais , Humanos , Camundongos , beta-Glucanas/metabolismo , Candida albicans/fisiologia , Membrana Celular/metabolismo , Quitina/metabolismo , Células Epiteliais/metabolismo , Células HeLa , Imunidade Inata , Inflamação/patologia , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Células RAW 264.7 , Receptores de Reconhecimento de Padrão/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Transdução de Sinais
20.
Mol Plant Microbe Interact ; 23(4): 425-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20192830

RESUMO

At least 12 avirulence genes have been genetically identified and mapped in Phytophthora sojae, an oomycete pathogen causing root and stem rot of soybean. Previously, the Avr4 and Avr6 genes of P. sojae were genetically mapped within a 24 kb interval of the genome. Here, we identify Avr4 and Avr6 and show that they are actually a single gene, Avr4/6, located near the 24-kb region. Avr4/6 encodes a secreted protein of 123 amino acids with an RXLR-dEER protein translocation motif. Transient expression of Avr4/6 in soybean leaves revealed that its gene product could trigger a hypersensitive response (HR) in the presence of either Rps4 or Rps6. Silencing Avr4/6 in P. sojae stable transformants abolished the avirulence phenotype exhibited on both Rps4 and Rps6 soybean cultivars. The N terminus of Avr4/6, including the dEER motif, is sufficient to trigger Rps4-dependent HR while its C terminus is sufficient to trigger Rps6-mediated HR. Compared with alleles from avirulent races, alleles of Avr4/6 from virulent races possess nucleotide substitutions in the 5' untranslated region of the gene but not in the protein-coding region.


Assuntos
Glycine max/genética , Phytophthora/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Sequência de Bases , Morte Celular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Dados de Sequência Molecular , Phytophthora/genética , Phytophthora/patogenicidade , Polimorfismo Genético , Glycine max/metabolismo , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA