RESUMO
Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.
Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Quitridiomicetos/genética , Anuros , Anfíbios/microbiologia , Micoses/microbiologia , Transformação GenéticaRESUMO
The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.
Assuntos
Quitridiomicetos , Micoses , Animais , Virulência/genética , Quitridiomicetos/genética , Micoses/microbiologia , Anfíbios/microbiologia , Genótipo , Vírus de DNARESUMO
Chytrid fungi play key ecological roles in aquatic ecosystems, and some species cause a devastating skin disease in frogs and salamanders. Additionally, chytrids occupy a unique phylogenetic position- sister to the well-studied Dikarya (the group including yeasts, sac fungi, and mushrooms) and related to animals- making chytrids useful for answering important evolutionary questions. Despite their importance, little is known about the basic cell biology of chytrids. A major barrier to understanding chytrid biology has been a lack of genetic tools with which to test molecular hypotheses. Medina and colleagues recently developed a protocol for Agrobacterium -mediated transformation of Spizellomyces punctatus. In this manuscript, we describe the general procedure including planning steps and expected results. We also provide in-depth, step-by-step protocols and video guides for performing the entirety of this transformation procedure on protocols.io (dx.doi.org/10.17504/protocols.io.x54v9dd1pg3e/v1).