Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32380006

RESUMO

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia
2.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141610

RESUMO

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Assuntos
Transdução de Sinais , Tromboplastina , Animais , Camundongos , Inflamação , Interferon-alfa , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tromboplastina/genética
3.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31784108

RESUMO

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Fígado/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Arginina/sangue , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Hepatócitos/metabolismo , Fígado/imunologia , Fígado/virologia , Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ornitina/sangue , Ornitina Carbamoiltransferase/genética , Transdução de Sinais/imunologia , Ureia/metabolismo , Células Vero
4.
EMBO J ; 41(10): e111208, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35471700

RESUMO

Plasmacytoid dendritic cells (pDC) have the unique ability to rapidly mount high-level antiviral type I interferon (IFN-I) responses during diverse virus infections. In COVID-19 patients, reduced pDC numbers correlate with diminished IFN-I serum levels and enhanced disease severity. However, the molecular mechanisms underlying SARS-CoV-2-mediated pDC stimulation to induce cytokine responses are still largely unclear. In this issue of the EMBO Journal, van der Sluis and colleagues tackled this question by using an innovative hematopoietic stem and progenitor cells (HSPC)-pDC system that allows gene editing and the detailed analysis of pDC sensing mechanisms.


Assuntos
COVID-19 , Interferon Tipo I , Receptores Toll-Like , Células Dendríticas , Humanos , SARS-CoV-2
5.
Proc Natl Acad Sci U S A ; 120(25): e2219790120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307450

RESUMO

Dendritic cells (DCs) orchestrate immune responses by presenting antigenic peptides on major histocompatibility complex (MHC) molecules to T cells. Antigen processing and presentation via MHC I rely on the peptide-loading complex (PLC), a supramolecular machinery assembled around the transporter associated with antigen processing (TAP), which is the peptide transporter in the endoplasmic reticulum (ER) membrane. We studied antigen presentation in human DCs by isolating monocytes from blood and differentiating them into immature and mature DCs. We uncovered that during DC differentiation and maturation, additional proteins are recruited to the PLC, including B-cell receptor-associated protein 31 (BAP31), vesicle-associated membrane protein-associated protein A (VAPA), and extended synaptotagmin-1 (ESYT1). We demonstrated that these ER cargo export and contact site-tethering proteins colocalize with TAP and are within 40 nm proximity of the PLC, suggesting that the antigen processing machinery is located near ER exit- and membrane contact sites. While CRISPR/Cas9-mediated deletion of TAP and tapasin significantly reduced MHC I surface expression, single-gene deletions of the identified PLC interaction partners revealed a redundant role of BAP31, VAPA, and ESYT1 in MHC I antigen processing in DCs. These data highlight the dynamics and plasticity of PLC composition in DCs that previously was not recognized by the analysis of cell lines.


Assuntos
Complexo Principal de Histocompatibilidade , Peptídeos , Humanos , Apresentação de Antígeno , Células Dendríticas , Antígenos de Histocompatibilidade Classe I , Sinaptotagminas
6.
Eur J Immunol ; 54(7): e2451056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593351

RESUMO

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Hipermutação Somática de Imunoglobulina , SARS-CoV-2/imunologia , Humanos , Hipermutação Somática de Imunoglobulina/genética , COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células B de Memória/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica/imunologia , Vacinas contra COVID-19/imunologia
7.
Immunity ; 44(4): 901-12, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27096319

RESUMO

Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy.


Assuntos
Encéfalo/citologia , Quimiocina CXCL10/imunologia , Transtornos Cognitivos/genética , Células Endoteliais/imunologia , Células Epiteliais/imunologia , Comportamento de Doença/fisiologia , Receptor de Interferon alfa e beta/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/imunologia , Comunicação Celular/imunologia , Células Cultivadas , Transtornos Cognitivos/psicologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Endotélio/citologia , Endotélio/imunologia , Epitélio/imunologia , Interferon Tipo I/uso terapêutico , Helicase IFIH1 Induzida por Interferon , Masculino , Camundongos , RNA de Cadeia Dupla/genética , Receptor de Interferon alfa e beta/imunologia , Receptores CXCR3/imunologia , Transdução de Sinais/imunologia , Viroses/imunologia
8.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037380

RESUMO

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Assuntos
Encéfalo , Heme , Interferon beta , Malária Cerebral , Proteínas de Membrana , Animais , Encéfalo/parasitologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Endotélio/imunologia , Endotélio/parasitologia , Heme/metabolismo , Interferon beta/imunologia , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Plasmodium berghei/metabolismo , Ativação Transcricional/imunologia
9.
Clin Immunol ; 260: 109902, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218210

RESUMO

The devastating impact of COVID-19 on global health shows the need to increase our pandemic preparedness. Recombinant therapeutic antibodies were successfully used to treat and protect at-risk patients from COVID-19. However, the currently circulating Omicron subvariants of SARS-CoV-2 are largely resistant to therapeutic antibodies, and novel approaches to generate broadly neutralizing antibodies are urgently needed. Here, we describe a tetravalent bispecific antibody, A7A9 TVB, which actively neutralized many SARS-CoV-2 variants of concern, including early Omicron subvariants. Interestingly, A7A9 TVB neutralized more variants at lower concentration as compared to the combination of its parental monoclonal antibodies, A7K and A9L. A7A9 also reduced the viral load of authentic Omicron BA.1 virus in infected pseudostratified primary human nasal epithelial cells. Overall, A7A9 displayed the characteristics of a potent broadly neutralizing antibody, which may be suitable for prophylactic and therapeutic applications in the clinics, thus highlighting the usefulness of an effective antibody-designing approach.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais/uso terapêutico , Pais , Anticorpos Antivirais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico
10.
J Med Virol ; 96(2): e29455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323709

RESUMO

Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Imunidade Inata , Neurônios
11.
Transpl Int ; 37: 12720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655204

RESUMO

Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Everolimo , Imunossupressores , Ácido Micofenólico , Sirolimo , Linfócitos T , Tacrolimo , Humanos , Infecções por Citomegalovirus/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Citomegalovirus/imunologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Prednisolona/uso terapêutico , Transplante de Órgãos , Proliferação de Células/efeitos dos fármacos
12.
Glia ; 71(11): 2573-2590, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455566

RESUMO

Demyelination in the central nervous system (CNS) is a hallmark of many neurodegenerative diseases such as multiple sclerosis (MS) and others. Here, we studied astrocytes during de- and remyelination in the cuprizone mouse model. To this end, we exploited the ribosomal tagging (RiboTag) technology that is based on Cre-mediated cell type-selective HA-tagging of ribosomes. Analyses were performed in the corpus callosum of GFAP-Cre+/- Rpl22HA/wt mice 5 weeks after cuprizone feeding, at the peak of demyelination, and 0.5 and 2 weeks after cuprizone withdrawal, when remyelination and tissue repair is initiated. After 5 weeks of cuprizone feeding, reactive astrocytes showed inflammatory signatures with enhanced expression of genes that modulate leukocyte migration (Tlr2, Cd86, Parp14) and they produced the chemokine CXCL10, as verified by histology. Furthermore, demyelination-induced reactive astrocytes expressed numerous ligands including Cx3cl1, Csf1, Il34, and Gas6 that act on homeostatic as well as activated microglia and thus potentially mediate activation and recruitment of microglia and enhancement of their phagocytotic activity. During early remyelination, HA-tagged cells displayed reduced inflammatory response signatures, as indicated by shutdown of CXCL10 production, and enhanced expression of osteopontin (SPP1) as well as of factors that are relevant for tissue remodeling (Timp1), regeneration and axonal repair. During late remyelination, the signatures shifted towards resolving inflammation by active suppression of lymphocyte activation and differentiation and support of glia cell differentiation. In conclusion, we detected highly dynamic astroglial transcriptomic signatures in the cuprizone model, which reflects excessive communication among glia cells and highlights different astrocyte functions during neurodegeneration and regeneration.


Assuntos
Cuprizona , Doenças Desmielinizantes , Camundongos , Animais , Cuprizona/toxicidade , Astrócitos/metabolismo , Doenças Desmielinizantes/patologia , Neuroglia/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
13.
Eur J Immunol ; 52(6): 895-906, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365883

RESUMO

CD8+ memory T cells (TM ) are crucial for long-term protection from infections and cancer. Multiple cell types and cytokines are involved in the regulation of CD8+ T cell responses and subsequent TM formation. Besides their direct antiviral effects, type I interferons (IFN-I) modulate CD8+ T cell immunity via their action on several immune cell subsets. However, it is largely unclear how nonimmune cells are involved in this multicellular network modulating CD8+ TM formation. Fibroblastic reticular cells (FRCs) form the 3D scaffold of secondary lymphoid organs, express the IFN-I receptor (IFNAR), and modulate adaptive immune responses. However, it is unclear whether and how early IFNAR signals in lymph node (LN) FRCs affect CD8+ TM differentiation. Using peptide vaccination and viral infection, we studied CD8+ TM differentiation in mice with an FRC-specific IFNAR deletion (FRCΔIFNAR ). We show here that the differentiation of CD8+ TCR-transgenic T cells into central memory cells (TCM ) is enhanced in peptide-vaccinated FRCΔIFNAR mice. Conversely, vesicular stomatitis virus infection of FRCΔIFNAR mice is associated with impaired TCM formation and the accumulation of vesicular stomatitis virus specific double-positive CD127hi KLRG-1hi effector memory T cells. In summary, we provide evidence for a context-dependent contribution of FRC-specific IFNAR signaling to CD8+ TM differentiation.


Assuntos
Vacinas Anticâncer , Estomatite Vesicular , Animais , Linfócitos T CD8-Positivos , Fibroblastos , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de Subunidades Antigênicas , Estomatite Vesicular/metabolismo , Estomatite Vesicular/patologia
14.
J Neuroinflammation ; 20(1): 58, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872323

RESUMO

BACKGROUND: Theiler's murine encephalomyelitis virus (TMEV) is a single-stranded RNA virus that causes encephalitis followed by chronic demyelination in SJL mice and spontaneous seizures in C57BL/6 mice. Since earlier studies indicated a critical role of type I interferon (IFN-I) signaling in the control of viral replication in the central nervous system (CNS), mouse strain-specific differences in pathways induced by the IFN-I receptor (IFNAR) might determine the outcome of TMEV infection. METHODS: Data of RNA-seq analysis and immunohistochemistry were used to compare the gene and protein expression of IFN-I signaling pathway members between mock- and TMEV-infected SJL and C57BL/6 mice at 4, 7 and 14 days post-infection (dpi). To address the impact of IFNAR signaling in selected brain-resident cell types, conditional knockout mice with an IFNAR deficiency in cells of the neuroectodermal lineage (NesCre±IFNARfl/fl), neurons (Syn1Cre±IFNARfl/fl), astrocytes (GFAPCre±IFNARfl/fl), and microglia (Sall1CreER±IFNARfl/fl) on a C57BL/6 background were tested. PCR and an immunoassay were used to quantify TMEV RNA and cytokine and chemokine expression in their brain at 4 dpi. RESULTS: RNA-seq analysis revealed upregulation of most ISGs in SJL and C57BL/6 mice, but Ifi202b mRNA transcripts were only increased in SJL and Trim12a only in C57BL/6 mice. Immunohistochemistry showed minor differences in ISG expression (ISG15, OAS, PKR) between both mouse strains. While all immunocompetent Cre-negative control mice and the majority of mice with IFNAR deficiency in neurons or microglia survived until 14 dpi, lack of IFNAR expression in all cells (IFNAR-/-), neuroectodermal cells, or astrocytes induced lethal disease in most of the analyzed mice, which was associated with unrestricted viral replication. NesCre±IFNARfl/fl mice showed more Ifnb1, Tnfa, Il6, Il10, Il12b and Ifng mRNA transcripts than Cre-/-IFNARfl/fl mice. IFNAR-/- mice also demonstrated increased IFN-α, IFN-ß, IL1-ß, IL-6, and CXCL-1 protein levels, which highly correlated with viral load. CONCLUSIONS: Ifi202b and Trim12a expression levels likely contribute to mouse strain-specific susceptibility to TMEV-induced CNS lesions. Restriction of viral replication is strongly dependent on IFNAR signaling of neuroectodermal cells, which also controls the expression of key pro- and anti-inflammatory cytokines during viral brain infection.


Assuntos
Theilovirus , Animais , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Encéfalo , Sistema Nervoso Central , Citocinas , Anticorpos
15.
Immunity ; 40(6): 961-73, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24909889

RESUMO

Direct type I interferon (IFN) signaling on T cells is necessary for the proper expansion, differentiation, and survival of responding T cells following infection with viruses prominently inducing type I IFN. The reasons for the abortive response of T cells lacking the type I IFN receptor (Ifnar1(-/-)) remain unclear. We report here that Ifnar1(-/-) T cells were highly susceptible to natural killer (NK) cell-mediated killing in a perforin-dependent manner. Depletion of NK cells prior to lymphocytic choriomeningitis virus (LCMV) infection completely restored the early expansion of Ifnar1(-/-) T cells. Ifnar1(-/-) T cells had elevated expression of natural cytotoxicity triggering receptor 1 (NCR1) ligands upon infection, rendering them targets for NCR1 mediated NK cell attack. Thus, direct sensing of type I IFNs by T cells protects them from NK cell killing by regulating the expression of NCR1 ligands, thereby revealing a mechanism by which T cells can evade the potent cytotoxic activity of NK cells.


Assuntos
Antígenos Ly/imunologia , Citotoxicidade Imunológica , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Receptor de Interferon alfa e beta/genética , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Imunidade Inata , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/biossíntese , Infecções por Rhabdoviridae/imunologia , Transdução de Sinais/imunologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Replicação Viral/imunologia
16.
Cell Mol Life Sci ; 79(9): 477, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947215

RESUMO

Dendritic cells (DCs) translate local innate immune responses into long-lasting adaptive immunity by priming antigen-specific T cells. Accordingly, there is an ample interest in exploiting DCs for therapeutic purposes, e.g., in personalized immunotherapies. Despite recent advances in elucidating molecular pathways of antigen processing, in DCs the exact spatial organization of the underlying processes is largely unknown. Here, we unraveled the nanoscale organization of the transporter associated with antigen processing (TAP)-dependent peptide-loading machinery in human monocyte-derived DCs (moDC). We detected an unexpected accumulation of MHC I peptide-loading complexes (PLCs) and TAP-dependent peptide compartmentalization in protrusions of activated DCs. Using single-molecule localization microscopy we revealed that PLCs display homogeneously sized assemblies, independent of the DC activation status or cellular localization. Our data indicate that moDCs show augmentation of subcellular PLC density during DC maturation. We observed a twofold density increase in the cell body, while an even fourfold accumulation was detected in the tips of the protrusions at the mature DC stage in comparison to immature DCs. In these tip regions, PLC assemblies are found along highly compressed tubular ER networks. These findings provide novel insights into nanoscale organization of the antigen presentation machinery, and open new perspectives on the T cell stimulatory capacity of DCs.


Assuntos
Células Dendríticas , Antígenos de Histocompatibilidade Classe I , Apresentação de Antígeno , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Monócitos/metabolismo , Peptídeos/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(32): 19475-19486, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32709741

RESUMO

The DNA sensor cGAS catalyzes the production of the cyclic dinucleotide cGAMP, resulting in type I interferon responses. We addressed the functionality of cGAS-mediated DNA sensing in human and murine T cells. Activated primary CD4+ T cells expressed cGAS and responded to plasmid DNA by upregulation of ISGs and release of bioactive interferon. In mouse T cells, cGAS KO ablated sensing of plasmid DNA, and TREX1 KO enabled cells to sense short immunostimulatory DNA. Expression of IFIT1 and MX2 was downregulated and upregulated in cGAS KO and TREX1 KO T cell lines, respectively, compared to parental cells. Despite their intact cGAS sensing pathway, human CD4+ T cells failed to mount a reverse transcriptase (RT) inhibitor-sensitive immune response following HIV-1 infection. In contrast, infection of human T cells with HSV-1 that is functionally deficient for the cGAS antagonist pUL41 (HSV-1ΔUL41N) resulted in a cGAS-dependent type I interferon response. In accordance with our results in primary CD4+ T cells, plasmid challenge or HSV-1ΔUL41N inoculation of T cell lines provoked an entirely cGAS-dependent type I interferon response, including IRF3 phosphorylation and expression of ISGs. In contrast, no RT-dependent interferon response was detected following transduction of T cell lines with VSV-G-pseudotyped lentiviral or gammaretroviral particles. Together, T cells are capable to raise a cGAS-dependent cell-intrinsic response to both plasmid DNA challenge or inoculation with HSV-1ΔUL41N. However, HIV-1 infection does not appear to trigger cGAS-mediated sensing of viral DNA in T cells, possibly by revealing viral DNA of insufficient quantity, length, and/or accessibility to cGAS.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , DNA Viral/fisiologia , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Especificidade da Espécie , Replicação Viral
18.
Eur Heart J ; 43(42): 4496-4511, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-35758064

RESUMO

AIMS: Cardiotoxicity leading to heart failure (HF) is a growing problem in many cancer survivors. As specific treatment strategies are not available, RNA discovery pipelines were employed and a new and powerful circular RNA (circRNA)-based therapy was developed for the treatment of doxorubicin-induced HF. METHODS AND RESULTS: The circRNA sequencing was applied and the highly species-conserved circRNA insulin receptor (Circ-INSR) was identified, which participates in HF processes, including those provoked by cardiotoxic anti-cancer treatments. Chemotherapy-provoked cardiotoxicity leads to the down-regulation of Circ-INSR in rodents and patients, which mechanistically contributes to cardiomyocyte cell death, cardiac dysfunction, and mitochondrial damage. In contrast, Circ-INSR overexpression prevented doxorubicin-mediated cardiotoxicity in both rodent and human cardiomyocytes in vitro and in a mouse model of chronic doxorubicin cardiotoxicity. Breast cancer type 1 susceptibility protein (Brca1) was identified as a regulator of Circ-INSR expression. Detailed transcriptomic and proteomic analyses revealed that Circ-INSR regulates apoptotic and metabolic pathways in cardiomyocytes. Circ-INSR physically interacts with the single-stranded DNA-binding protein (SSBP1) mediating its cardioprotective effects under doxorubicin stress. Importantly, in vitro transcribed and circularized Circ-INSR mimics also protected against doxorubicin-induced cardiotoxicity. CONCLUSION: Circ-INSR is a highly conserved non-coding RNA which is down-regulated during cardiotoxicity and cardiac remodelling. Adeno-associated virus and circRNA mimics-based Circ-INSR overexpression prevent and reverse doxorubicin-mediated cardiomyocyte death and improve cardiac function. The results of this study highlight a novel and translationally important Circ-INSR-based therapeutic approach for doxorubicin-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Cardiopatias , Camundongos , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , RNA Circular/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/farmacologia , Proteômica , Apoptose , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Cardiopatias/prevenção & controle , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Proteínas Mitocondriais
19.
PLoS Pathog ; 16(2): e1008279, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32023327

RESUMO

IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity.


Assuntos
Antígenos Ly/imunologia , Regulação da Expressão Gênica/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Antígenos Ly/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/genética , Células Matadoras Naturais/patologia , Camundongos , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Linfócitos T/imunologia , Linfócitos T/patologia , Vacínia/genética , Vacínia/patologia , Vaccinia virus/genética
20.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293352

RESUMO

Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to "abortion storms" and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR-/-) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7-11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR-/- mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2-5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route.


Assuntos
Carcinoma Hepatocelular , Encefalite , Interferon Tipo I , Neoplasias Hepáticas , Vírus da Febre do Vale do Rift , Humanos , Animais , Camundongos , Vírus da Febre do Vale do Rift/genética , Receptor de Interferon alfa e beta/genética , Camundongos Endogâmicos C57BL , Antivirais , Necrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA