Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Inflammopharmacology ; 32(1): 885-891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37773574

RESUMO

The COVID-19 pandemic has resulted in a global health crisis that has severely impacted patients with type 2 diabetes (T2D). T2D patients have a higher risk of experiencing severe COVID-19 symptoms, hospitalization, and mortality compared to patients without diabetes. The dysregulated immune response in T2D patients can exacerbate the severity of COVID-19 symptoms. Insulin therapy, a common treatment for T2D patients, has been linked to increased mortality in COVID-19 patients with T2D. However, metformin, an anti-diabetic medication, has been shown to have anti-inflammatory properties that may mitigate the cytokine storm observed in severe COVID-19 cases. In this study, we investigated how the PRKAA1, SLC2A1, and MTOR genes contribute to inflammation markers in COVID-19 patients with T2D, who were receiving either insulin or metformin therapy. Our findings revealed that metformin treatment was associated with reduced expression of genes involved in Th1/Th17 cell differentiation. These results suggest that metformin could be a potential treatment option for T2D patients with COVID-19 due to its anti-inflammatory properties, which may improve patient outcomes.


Assuntos
Proteínas Quinases Ativadas por AMP , COVID-19 , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Domínio Catalítico , Pandemias , Serina-Treonina Quinases TOR , Inflamação/tratamento farmacológico , Insulina , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Expressão Gênica , Sirolimo , Transportador de Glucose Tipo 1
2.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108051

RESUMO

Despite several targeted antiviral drugs against SARS-CoV-2 currently being available, the application of type I interferons (IFNs) still deserves attention as an alternative antiviral strategy. This study aimed to assess the therapeutic effectiveness of IFN-α in hospitalized patients with COVID-19-associated pneumonia. The prospective cohort study included 130 adult patients with coronavirus disease (COVID-19). A dose of 80,000 IU of IFN-α2b was administered daily intranasally for 10 days. Adding IFN-α2b to standard therapy reduces the length of the hospital stay by 3 days (p < 0.001). The level of CT-diagnosed lung injuries was reduced from 35% to 15% (p = 0.011) and CT injuries decreased from 50% to 15% (p = 0.017) by discharge. In the group of patients receiving IFN-α2b, the SpO2 index before and after treatment increased from 94 (92-96, Q1-Q3) to 96 (96-98, Q1-Q3) (p < 0.001), while the percentage of patients with normal saturation increased (from 33.9% to 74.6%, p < 0.05), but the level of SpO2 decreased in the low (from 52.5% to 16.9%) and very low (from 13.6% to 8.5%) categories. The addition of IFN-α2b to standard therapy has a positive effect on the course of severe COVID-19.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Estudos Prospectivos , Interferon alfa-2/uso terapêutico , Interferon-alfa/uso terapêutico , Antivirais/uso terapêutico
3.
Endocr Regul ; 56(3): 178-189, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35843716

RESUMO

Objective. The aim of the present work is to define the risk factors that can affect the presence of a cognitive impairment and analyze the associations of the brain-derived neurotrophic factor (BDNF) gene polymorphism (rs6265), vitamin D receptor (VDR) gene polymorphism (rs2228570), and N-methyl-D-aspartate (NMDA) receptor gene polymorphism (rs4880213) with the cognitive impairment in patients with autoimmune thyroiditis and hypothyroidism in the Western Ukraine population and predict the development of cognitive disorders in these patients. Methods. The study involved 153 patients with various forms of thyroid pathology (hypothyroidism, autoimmune thyroiditis, elevated serum antibodies anti-thyroglobulin and anti-thyroid peroxidase). Cognitive impairment in the examined patients was evaluated based on the results of the Mini-Mental State Examination (MMSE) test. BDNF, GRIN2B, and 25-OH Vitamin D levels in the serum of the patients and healthy individuals were quantified using highly sensitive commercial enzyme-linked immunosorbent assay kits. Genotyping of the VDR (rs2228570), BDNF (rs6265), and NMDA receptor (rs4880213) gene polymorphism was performed using TaqMan probes and Taq-Man Genotyping Master Mix (4371355) on CFX96™Real-Time PCR Detection System. Polymerase chain reaction (PCR) for TaqMan genotyping was carried out according to the kit instructions. Results. Strong direct relationship between the "Level GRIN2B" and cognitive impairments (p=0.006) was established after evaluating the complex model based on the values of the regression coefficient. An increase in the likelihood of cognitive impairment by 24.898-fold (p=0.012) was seen after assessing the effect of the CT rs6265 genotype. In addition, direct relationship between the influence of the TT rs6265 genotype and an increase in the likelihood of cognitive impairment by a factor of 21.734 (p=0.024) was also established. Conclusion. The present data indicate that the BDNF, TSH, fT4, and vitamin D levels prognostically belong to the significant indicators of the cognitive impairment development.


Assuntos
Disfunção Cognitiva , Doença de Hashimoto , Hipotireoidismo , Tireoidite Autoimune , Fator Neurotrófico Derivado do Encéfalo/genética , Cognição , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Predisposição Genética para Doença , Doença de Hashimoto/genética , Humanos , Hipotireoidismo/genética , Tireoidite Autoimune/complicações , Tireoidite Autoimune/diagnóstico , Tireoidite Autoimune/genética , Vitamina D
4.
Endocr Regul ; 55(4): 193-203, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879183

RESUMO

Objective. Brain-derived neurotrophic factor (BDNF) is identified as an important growth factor involved in learning and memory. Patients with Hashimoto's thyroiditis can suffer from cognitive dysfunction, whereas BDNF is directly regulated by thyroid hormones. It seems reasonable to propose that changes in BDNF expression underlie some of the persistent neurological impairments associated with hypothyroidism. Methods. The study involved a total of 153 patients with various forms of thyroid pathology. BDNF levels in the sera of the patients and healthy individuals were quantified using enzyme-linked immunosorbent assay with highly sensitive Human BDNF ELISA Kit. Genotyping of the BDNF (rs6265) gene polymorphism using TaqMan probes and TaqMan Genotyping Master Mix (4371355) on CFX96™Real-Time PCR Detection System. Polymerase chain reaction (PCR) for TaqMan genotyping was carried out according to the kit instructions. Results. Distribution rs6265 variants in the patients depending on the different types of thyroid pathology showed no significant difference in the relative frequency of BDNF polymorphic variants. Presence of hypothyroidism, regardless of its cause (autoimmune or postoperative), there was a decrease in the serum BDNF levels in all genotypes carriers compared with the control group. The analysis of the correlation between BDNF levels and the levels of thyroid-stimulating hormone (TSH), thyroxine (T4), anti-thyroglobulin (anti-Tg), and anti-thyroid peroxidase (anti-TPO) antibodies showed a significant inverse relationship between BDNF and TSH levels (p<0.001), a direct correlation between BDNF and T4 levels in the blood (p<0.001), and a weak direct relationship between anti-Tg and BDNF levels (p=0.0157). Conclusion. The C allele presence is protective and associates with the lowest chances for reduced serum BDNF levels in thyroid pathology patients in the West-Ukrainian population. However, the T-allele increases the risk of low BDNF levels almost 10 times in observed subjects.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Glândula Tireoide , Autoanticorpos , Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/genética , Humanos , Polimorfismo Genético , Soro , Glândula Tireoide/fisiopatologia , Tiroxina , Ucrânia
5.
Viruses ; 16(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257811

RESUMO

This study investigates the intricate interplay between Metabolic-associated Fatty Liver Disease (MAFLD) and COVID-19, exploring the impact of MAFLD on disease severity, outcomes, and the efficacy of the antiviral agent Paxlovid (nirmatrelvir/ritonavir). MAFLD, affecting a quarter of the global population, emerges as a potential risk factor for severe COVID-19, yet the underlying pathophysiological mechanisms remain elusive. This study focuses on the clinical significance of Paxlovid, the first orally bioavailable antiviral agent granted Emergency Use Authorization in the United States. Notably, outcomes from phase II/III trials exhibit an 88% relative risk reduction in COVID-19-associated hospitalization or mortality among high-risk patients. Despite conflicting data on the association between MAFLD and COVID-19 severity, this research strives to bridge the gap by evaluating the effectiveness of Paxlovid in MAFLD patients with COVID-19, addressing the scarcity of relevant studies.


Assuntos
COVID-19 , Lactamas , Leucina , Nitrilas , Hepatopatia Gordurosa não Alcoólica , Prolina , Ritonavir , Humanos , Estudos Prospectivos , Antivirais/uso terapêutico , Combinação de Medicamentos
6.
Viruses ; 16(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38400056

RESUMO

COVID-19 remains a significant global concern, particularly for individuals with type 2 diabetes who face an elevated risk of hospitalization and mortality. Metformin, a primary treatment for type 2 diabetes, demonstrates promising pleiotropic properties that may substantially mitigate disease severity and expedite recovery. Our study of the gut microbiota and the mRNA expression of pro-inflammatory and anti-inflammatory T-lymphocyte subpopulations showed that metformin increases bacterial diversity while modulating gene expression related to T-lymphocytes. This study found that people who did not take metformin had a downregulated expression of FOXP3 by 6.62-fold, upregulated expression of RORC by 29.0-fold, and upregulated TBX21 by 1.78-fold, compared to the control group. On the other hand, metformin patients showed a 1.96-fold upregulation in FOXP3 expression compared to the control group, along with a 1.84-fold downregulation in RORC expression and an 11.4-fold downregulation in TBX21 expression. Additionally, we found a correlation with gut microbiota (F/B ratio and alpha-diversity index) and pro-inflammatory biomarkers. This novel observation of metformin's impact on T-cells and gut microbiota opens new horizons for further exploration through clinical trials to validate and confirm our data. The potential of metformin to modulate immune responses and enhance gut microbiota diversity suggests a promising avenue for therapeutic interventions in individuals with type 2 diabetes facing an increased risk of severe outcomes from COVID-19.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Fatores de Transcrição Forkhead , Microbioma Gastrointestinal/genética , Metformina/farmacologia , Metformina/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Mensageiro
7.
Viruses ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932276

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS: We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS: COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION: Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.


Assuntos
COVID-19 , Receptores de Hidrocarboneto Arílico , Receptores Acoplados a Proteínas G , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , COVID-19/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Feminino , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Pessoa de Meia-Idade , Idoso , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Expressão Gênica , Fígado Gorduroso/genética , Fígado Gorduroso/virologia , Adulto , Proteínas de Ligação a RNA , Fatores de Transcrição Hélice-Alça-Hélice Básicos
8.
Front Immunol ; 15: 1349883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410510

RESUMO

Introduction: Posttraumatic stress disorder (PTSD) is the most common mental health disorder to develop following exposure to trauma. Studies have reported conflicting results regarding changes in immune biomarkers and alterations in the abundance of bacterial taxa and microbial diversity in patients with PTSD. Aim: The purpose of this meta-analysis is to summarize existing studies examining gut microbiota characteristics and changes in immune biomarkers in patients with PTSD. Methods: Relevant studies were systematically searched in PubMed, Scopus, and Embase, published in English between January 1, 1960, and December 1, 2023. The outcomes included changes in abundance and diversity in gut microbiota (gut microbiota part) and changes in immune biomarkers (immune part). Results: The meta-analysis included a total of 15 studies, with 9 focusing on changes in inflammatory biomarkers and 6 focusing on changes in gut microbiota composition in patients with PTSD. No differences were observed between groups for all inflammatory biomarkers (P≥0.05). Two of the six studies found that people with PTSD had less alpha diversity. However, the overall Standardized Mean Difference (SMD) for the Shannon Diversity Index was not significant (SMD 0.27, 95% CI -0.62-0.609, p = 0.110). Regarding changes in abundance, in two of the studies, a significant decrease in Lachnospiraceae bacteria was observed. Conclusion: This meta-analysis provides a comprehensive overview of gut microbiota characteristics in PTSD, suggesting potential associations with immune dysregulation. Future research should address study limitations, explore causal relationships, and consider additional factors influencing immune function in individuals with PTSD. Systematic review registration: https://www.crd.york.ac.uk, identifier CRD42023476590.

9.
Front Microbiol ; 15: 1345684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476949

RESUMO

Leptospirosis, a re-emerging zoonotic disease, remains a significant global health concern, especially amid floods and disasters such as the Kakhovka Dam destruction. As is known, the stress that occurs in the conditions of military conflicts among civilian and military personnel significantly affects susceptibility to infectious diseases and possibly even influences their course. This review aims to explore how the gut microbiome and stress mediators (such as catecholamines and corticosteroids) might impact the leptospirosis disease course. The review opens new horizons for research by elucidating the connections between the gut microbiome, stress, and leptospirosis.

10.
Front Cell Infect Microbiol ; 14: 1374817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779563

RESUMO

Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.


Assuntos
Biofilmes , Periodontite , Biofilmes/crescimento & desenvolvimento , Humanos , Periodontite/microbiologia , Microscopia Confocal , DNA , Hibridização in Situ Fluorescente , Bactérias/genética , DNA Bacteriano/genética , Inflamassomos/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Gengiva/microbiologia , Periodontite Crônica/microbiologia , Periodontite Crônica/imunologia
11.
Mol Metab ; 77: 101805, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696355

RESUMO

BACKGROUND: The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain. SCOPE OF REVIEW: We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment. MAJOR CONCLUSIONS: Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures. Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Bactérias
12.
Front Mol Biosci ; 10: 1260633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881440

RESUMO

This review article explores the potential of metformin, a medication commonly used for type 2 diabetes, as an antiviral and anti-inflammatory agent in the context of coronavirus disease 2019 (COVID-19). Metformin has demonstrated inhibitory effects on the growth of SARS-CoV-2 in cell culture models and has shown promising results in reducing viral load and achieving undetectable viral levels in clinical trials. Additionally, metformin exhibits anti-inflammatory properties by reducing the production of pro-inflammatory cytokines and modulating immune cell function, which may help prevent cytokine storms associated with severe COVID-19. The drug's ability to regulate the balance between pro-inflammatory Th17 cells and anti-inflammatory Treg cells suggests its potential in mitigating inflammation and restoring T cell functionality. Furthermore, metformin's modulation of the gut microbiota, particularly changes in bacterial taxa and the production of short-chain fatty acids, may contribute to its therapeutic effects. The interplay between metformin, bile acids, the gut microbiome, glucagon-like peptide-1 secretion, and glycemic control has implications for the management of diabetes and potential interventions in COVID-19. By refreshing the current evidence, this review highlights the potential of metformin as a therapeutic option in the management of COVID-19, while also exploring its effects on the gut microbiome and immunometabolism.

13.
Viruses ; 15(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243158

RESUMO

The global population is currently experiencing the impact of the SARS-CoV-2 coronavirus, which has caused the Coronavirus Disease 2019 (COVID-19) pandemic. With our profound comprehension of COVID-19, encompassing the involvement sequence of the respiratory tract, gastrointestinal system, and cardiovascular apparatus, the multiorgan symptoms of this infectious disease have been discerned. Metabolic-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a pervasive public health concern intricately linked with metabolic dysregulation and estimated to afflict one-fourth of the global adult population. The burgeoning focus on the association between COVID-19 and MAFLD is justified by the potential role of the latter as a risk factor for both SARS-CoV-2 infection and the subsequent emergence of severe COVID-19 symptoms. Investigations have suggested that changes in both innate and adaptive immune responses among MAFLD patients may play a role in determining the severity of COVID-19. The remarkable similarities observed in the cytokine pathways implicated in both diseases imply the existence of shared mechanisms governing the chronic inflammatory responses characterizing these conditions. The effect of MAFLD on the severity of COVID-19 illness remains uncertain, as indicated by conflicting results in cohort investigations.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , SARS-CoV-2 , Fatores de Risco , Citocinas
14.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375851

RESUMO

The gut microbiota play a crucial role in maintaining host health and have a significant impact on human health and disease. In this study, we investigated the alpha diversity of gut microbiota in COVID-19 patients and analyzed the impact of COVID-19 variants, antibiotic treatment, type 2 diabetes (T2D), and metformin therapy on gut microbiota composition and diversity. We used a culture-based method to analyze the gut microbiota and calculated alpha-diversity using the Shannon H' and Simpson 1/D indices. We collected clinical data, such as the length of hospital stay (LoS), C-reactive protein (CRP) levels, and neutrophil-to-lymphocyte ratio. We found that patients with T2D had significantly lower alpha-diversity than those without T2D. Antibiotic use was associated with a reduction in alpha-diversity, while metformin therapy was associated with an increase. We did not find significant differences in alpha-diversity between the Delta and Omicron groups. The length of hospital stay, CRP levels, and NLR showed weak to moderate correlations with alpha diversity. Our findings suggest that maintaining a diverse gut microbiota may benefit COVID-19 patients with T2D. Interventions to preserve or restore gut microbiota diversity, such as avoiding unnecessary antibiotic use, promoting metformin therapy, and incorporating probiotics, may improve patient outcomes.

15.
Viruses ; 15(8)2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632067

RESUMO

Metabolic-associated fatty liver disease (MAFLD) and its potential impact on the severity of COVID-19 have gained significant attention during the pandemic. This review aimed to explore the genetic determinants associated with MAFLD, previously recognized as non-alcoholic fatty liver disease (NAFLD), and their potential influence on COVID-19 outcomes. Various genetic polymorphisms, including PNPLA3 (rs738409), GCKR (rs780094), TM6SF2 (rs58542926), and LYPLAL1 (rs12137855), have been investigated in relation to MAFLD susceptibility and progression. Genome-wide association studies and meta-analyses have revealed associations between these genetic variants and MAFLD risk, as well as their effects on lipid metabolism, glucose regulation, and liver function. Furthermore, emerging evidence suggests a possible connection between these MAFLD-associated polymorphisms and the severity of COVID-19. Studies exploring the association between indicated genetic variants and COVID-19 outcomes have shown conflicting results. Some studies observed a potential protective effect of certain variants against severe COVID-19, while others reported no significant associations. This review highlights the importance of understanding the genetic determinants of MAFLD and its potential implications for COVID-19 outcomes. Further research is needed to elucidate the precise mechanisms linking these genetic variants to disease severity and to develop gene profiling tools for the early prediction of COVID-19 outcomes. If confirmed as determinants of disease severity, these genetic polymorphisms could aid in the identification of high-risk individuals and in improving the management of COVID-19.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Estudo de Associação Genômica Ampla , COVID-19/epidemiologia , COVID-19/genética , Metabolismo dos Lipídeos , Comorbidade
16.
Front Immunol ; 14: 1069894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776844

RESUMO

Introduction: IFN-α intervention may block SARS-CoV-2 replication and normalize the deregulated innate immunity of COVID-19. Aim: This meta-analysis aimed to investigate the efficacy of interferon IFN-α-containing regimens when treating patients with moderate-to-severe COVID-19. Material and methods: PubMed, SCOPUS, and ClinicalTrials.gov were searched from inception to 15 January 2022. A systematic literature search was conducted by applying relevant terms for 'COVID-19' and 'interferon-α'. The primary outcome enclosed the all-cause hospital mortality. The secondary outcomes constituted the length of hospital stay; hospital discharge; nucleic acid negative conversion. Results: Eleven studies are enclosed in the meta-analysis. No significant difference in the all-cause mortality rate was found between the study and control groups (OR 0.2; 95% CI 0.05-1.2; I2 = 96%). The implementation of interferon did not influence such outcomes as the length of hospital stay (OR 0.9; 95% CІ, 0.3-2.6; I2 = 91%), nucleic acid negative conversion (OR 0.8; 95% CI, 0.04-17.2; I2 = 94%). Nevertheless, IFN-α treatment resulted in a higher number of patients discharged from the hospital (OR 26.6; 95% CІ, 2.7-254.3; I2 = 95%). Conclusions: Thus, IFN-α does not benefit the survival of hospitalized COVID-19 patients but may increase the number of patients discharged from the hospital. Systematic review registration: www.crd.york.ac.uk/prospero, identifier (CRD42022374589).


Assuntos
Antivirais , COVID-19 , Interferon-alfa , Humanos , Antivirais/uso terapêutico , Interferon-alfa/uso terapêutico , SARS-CoV-2
17.
Curr Pharm Biotechnol ; 23(11): 1396-1404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176984

RESUMO

BACKGROUND: Autoimmune thyroiditis (AIT), a T cell-mediated organ-specific disorder, and transcription factors have a critical role in the regulation of immune responses, especially in the fate of T-helper cells. OBJECTIVES: This study aims to investigate changes in the gene expression profile of transcription factors and regulators in patients with different forms of thyroid pathology. METHODS: We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify transcription factors and regulators pathway-focused genes expression in peripheral white blood cells of patients with postoperative hypothyroidism, hypothyroidism as a result of AIT and AIT with elevated serum and antithyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies. RESULTS: It was shown that in patients with postoperative hypothyroidism FOS, NR1I2, STAT4, and TP53 significantly increased their expression, whereas the expression of STAT1, STAT2, and STAT3 decreased. In patients with hypothyroidism as a result of AIT, we have found increased expression of NR1I2, STAT2, and STAT3. In contrast, the expression of STAT1 and TP53 decreased. FOS and STAT4 mRNAs did not change their expression. In patients with AIT and elevated serum anti-Tg and anti-TPO antibodies, the expression of FOS and NR1I2 reduced, whereas the mRNA level of STAT3 increased. STAT1, STAT2, and STAT4 mRNAs did not change their expression. MYC did not change its expression in all groups of patients. CONCLUSION: The results of this study demonstrate that autoimmune thyroiditis and hypothyroidism affect the mRNA-level expression of transcription factors and regulators genes in a gene-specific manner and that these changes to genes expression can be one of the triggers of autoimmune inflammation progression in the thyroid gland.


Assuntos
Doença de Hashimoto , Hipotireoidismo , Tireoidite Autoimune , Humanos , Hipotireoidismo/genética , Receptor de Pregnano X , RNA Mensageiro/genética
18.
J Med Life ; 15(1): 109-116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35186144

RESUMO

The article discusses a new hypothesis that autoimmune diseases of the thyroid gland can lead to depression and neurological complications. It is believed that the neuronal N-methyl-D-aspartate receptor plays a significant role in depression pathophysiology and neurological and mental diseases, respectively. The study involved 153 patients with various forms of thyroid pathology. GRIN2B levels in the sera of the patients and healthy individuals were quantified using enzyme-linked immunosorbent assay with highly sensitive Human GRIN2B (Glutamate Receptor, Ionotropic, N-Methyl-D-Aspartate 2B) ELISA Kit. Genotyping of the glutamate ionotropic receptor NMDA type subunit 1, GRIN1 (rs4880213) gene polymorphism. The CT genotype of the NMDA gene (rs4880213) was predominant in the surveyed population. The C allele of the NMDA gene was more frequent than the T allele among patients with thyroid disease. GRIN2B levels were significantly decreased in patients with postoperative hypothyroidism 3.45 times, and in patients with AIT-induced hypothyroidism, there was a probable increase in GRIN2B levels by 1.58 times compared with controls. GRIN2B levels were significantly different in patients of different groups depending on thyroid pathology. Our study showed direct close correlation (r=0.635) between GRIN2B and anti-TPO levels (p<0.001), a significant direct close correlation (r=0.527) between GRIN2B and anti-TG levels in the blood (p<0.001). Our results allow us to consider the GRIN2B level as an important prognostic minimally invasive marker of neurological complications in endocrine pathology.


Assuntos
N-Metilaspartato , Glândula Tireoide , Genótipo , Humanos , Polimorfismo Genético , Receptores de N-Metil-D-Aspartato , Soro
19.
Viruses ; 14(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35336884

RESUMO

Coronavirus disease 2019, or COVID-19, is a major challenge facing scientists worldwide. Alongside the lungs, the system of organs comprising the GI tract is commonly targeted by COVID-19. The dysbiotic modulations in the intestine influence the disease severity, potentially due to the ability of the intestinal microbiota to modulate T lymphocyte functions, i.e., to suppress or activate T cell subpopulations. The interplay between the lungs and intestinal microbiota is named the gut-lung axis. One of the most usual comorbidities in COVID-19 patients is type 2 diabetes, which induces changes in intestinal microbiota, resulting in a pro-inflammatory immune response, and consequently, a more severe course of COVID-19. However, changes in the microbiota in this comorbid pathology remain unclear. Metformin is used as a medication to treat type 2 diabetes. The use of the type 2 diabetes drug metformin is a promising treatment for this comorbidity because, in addition to its hypoglycemic action, it can increase amount of intestinal bacteria that induce regulatory T cell response. This dual activity of metformin can reduce lung damage and improve the course of the COVID-19 disease.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Disbiose , Humanos , Imunidade
20.
J Med Life ; 14(2): 243-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104248

RESUMO

The thyroid hormone plays a vital role in the development and maturation of the nervous system not only during prenatal and perinatal age but also in adults. "Peripheral marker hypothesis" revealed that gene expression changes in some regions of the brain are reflected into the peripheral blood lymphocytes. The objective of the study was to investigate changes in the gene expression profile of neuropeptides and their receptors in patients with different forms of thyroid pathology. One hundred fifty-three patients with thyroid pathology were enrolled in the study. They were divided into three groups: group 1 included 16 patients with postoperative hypothyroidism, group 2 included 65 patients with hypothyroidism resulting from autoimmune thyroiditis (AIT), and group 3 included 72 patients with AIT and elevated levels of anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies in the serum. We used a pathway-specific polymerase chain reaction (PCR) array (RT2 Profiler™ PCR Array Human Neurotrophins & Receptors, QIAGEN, Germany) to identify and verify neuropeptides and receptors pathway-focused gene expression in 12 individuals that were randomly selected from each group using real-time PCR. Our research identified that patients with postoperative hypothyroidism had a considerably increased expression of NPY1R, NTSR1, and NPY4R. The patients with hypothyroidism caused by autoimmune thyroiditis had considerably lower expression of NTSR1, while the expression of NPY1R increased. The mRNA levels of NPY2R and PNOC increased in the patients with elevated levels of autoantibodies anti-Tg and anti-TPO in the serum, and mRNA levels of NPY1R and NTSR1 decreased in this group of patients.


Assuntos
Neuropeptídeos/sangue , Neuropeptídeos/genética , Receptores de Neuropeptídeos/sangue , Receptores de Neuropeptídeos/genética , Glândula Tireoide/patologia , Transcrição Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Alemanha , Humanos , Hipotireoidismo/sangue , Hipotireoidismo/genética , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Neuropeptídeos/metabolismo , Tireoidite Autoimune/sangue , Tireoidite Autoimune/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA